
Master’s Thesis

in the Course of Study
Computer Science

in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Implementing a parallel Points-To Analysis

Submitted by

Lukas Böttcher
Matr. Nr.: 1125862

stu210239@mail.uni-kiel.de

at the Kiel University

University supervisors: Prof. Dr. Dirk Nowotka
Dipl.-Inf. Philipp Maximilian Sieweck

Version from: July 9, 2024

mailto:stu210239@mail.uni-kiel.de

Lukas Böttcher

Declaration

I hereby declare that the work presented in this thesis is entirely my own and that I did

not use any other sources and references than the listed ones. I have marked all direct or

indirect statements from other sources contained therein as quotations. Neither this work

nor significant parts of it were part of another examination procedure. I have not published

this work in whole or in part before. The electronic copy is consistent with all submitted

copies.

place, date, signature

I

Lukas Böttcher

Abstract

Pointer analysis is a subgroup of static analysis techniques. In general, the goal is to detect

a set of memory locations for each pointer element in a program. All major compiler

systems make use of this information in order to optimize the given code during compilation

and most importantly, to detect errors in the program. In this thesis an interprocedural

inclusion-based pointer analysis, PTAGPU, is presented that utilizes the parallel execution

of GPGPUs to speed up the pointer analysis as part of the SVF framework. As the SVF

framework itself is built on top of the LLVM compiler infrastructure, it is possible to run

the proposed analysis on any program that can be compiled inside the LLVM toolchain.

A meaningful speedup was observed with the proposed parallel implementation compared

to the single threaded highly optimized wave propagation inclusion-based pointer analysis.

An evaluation of the proposed analysis is provided both through the SVF test suite and a

collection of open source programs used as benchmarks.

Keywords: pointer analysis, static analysis, GPU acceleration

III

Lukas Böttcher

Acknowledgment

I would like to thank the dependable systems working group of the department of computer

science at the Christian-Albrechts university for accommodating this master thesis and

providing the hardware required to perform research for this thesis. Special thanks to my

advisor Philipp Sieweck for providing guidance during the work on this thesis.

V

Lukas Böttcher

Contents

Declaration I

Abstract III

Acknowledgment V

1 Introduction 1

1.1 Structure of this Thesis . 1

1.2 Motivation . 2

1.2.1 Static Analysis in Software Development 2

1.3 Pointer Analysis . 3

1.3.1 Notions of Sensitivity in Pointer Analysis 4

1.3.2 Andersen’s Analysis . 9

1.3.3 Steensgard’s Analysis . 10

1.3.4 Wave Propagation . 12

1.3.5 LLVM - Generating Data for the Analysis 12

1.4 Context-free Languages . 19

1.4.1 Definition of Context-free Languages and Grammars 19

1.4.2 Andersen Analysis via CFL-Reachability 21

1.4.3 Context-free Path Queries via Matrix Multiplications 22

1.5 Related Work . 27

1.5.1 SVF . 27

VII

Lukas Böttcher

1.5.2 Graspan . 30

2 PTAGPU 33

2.1 Integrating PTAGPU into SVF . 33

2.2 Goal of the Algorithm . 34

2.3 Design of the Algorithm . 35

2.3.1 CUDA Architecture . 35

2.3.2 Initialization of CUDA code . 40

2.3.3 Sparse bit vectors . 42

2.3.4 Edge Insertion . 44

2.3.5 Concurrent Graph Rewriting . 46

2.3.6 Combining CPU and GPU execution 54

2.3.7 Feeding the Results back into SVF 56

2.4 Experimental Results . 56

2.4.1 Test Suite . 57

2.4.2 Benchmark Suite . 58

3 Discussion 69

3.1 Evaluation of Results . 69

3.2 Future Work . 71

3.3 Conclusion . 73

A Raw Data 75

List of Figures 79

List of Tables 81

Bibliography 85

VIII

Lukas Böttcher

Chapter 1

Introduction

The goal of this thesis is the implementation of a parallel pointer analysis. As well as

researching to what extent such an implementation presents advantages or disadvantages

over other pointer analyses that are not strictly parallel in nature.

A digital version of this thesis together with the full source code of the

developed software is available online at

https://git.informatik.uni-kiel.de/stu210239/masterarbeit.

1.1 Structure of this Thesis

This thesis is divided into three chapters. The first chapter, chapter 1, lays the groundwork

for the implementation and goes into detail what ideas were pursued in order to develop the

implementation. All related current work and its influences on this thesis are discussed here,

as well as the motivation for the implementation itself. Furthermore, the fundamentals of

pointer analysis are explained here with code samples and an end to end analysis workflow

that aims to illustrate the connection between actual code and its representation in a

pointer analysis.

In the second chapter, chapter 2, the software, namely PTAGPU, that was developed as

part of this thesis, is described in detail. Design decisions, integrations with other software

libraries and correctness are elaborated here. The experimental benchmark results and how

they were generated are also presented here.

The last chapter, chapter 3, covers possible future work that could further improve the

implementation and explore more ideas concerning parallel pointer analyses. This chapter

also discusses the experimental results from chapter 2.

1

https://git.informatik.uni-kiel.de/stu210239/masterarbeit

1.2. Motivation Lukas Böttcher

1.2 Motivation

This thesis aims to explore the possibilities of parallelizing the Andersen style inclusion-

based whole program pointer analysis. Specifically the goal is to improve static pointer

analysis performance by using massively parallel GPGPUs. With the general trend of

more complex software systems in software development, developers also require static

analysis tools that are able to perform scalable analyses on entire codebases. Unfortunately

general pointer analysis is an undecidable computational problem [Lan92], which prevents

fully precise pointer analyses from being a possibility. For this reason all pointer analyses

are approximate, and a balance must be found between performance and precision when

analyzing code. Historically most pointer analysis solutions have been implemented as single

threaded applications, because pointer analyses are challenging to parallelise [SYXL15]. By

using GPGPUs the proposed library from this thesis aims to improve performance when

analyzing entire programs by distributing the work across the many streaming processors

modern GPGPUs possess. The performance improvement of the proposed implementation

also should not decrease the analysis precision.

1.2.1 Static Analysis in Software Development

Currently, most compilers employ almost entirely intraprocedural pointer analyses to allow

for a fast and scalable static analysis during compilation. Only recently limited support for

interprocedural analyses was introduced in the GCC compiler1. With greater complexity in

modern software projects, these ad hoc intraprocedural analyses during compilation are not

sufficient for finding most bugs because they suffer from low accuracy and missing semantic

information [GZJ+20]. Especially if a software project is composed of many components,

interprocedural analysis is required for finding bugs that arise from interactions between

individual components. One such project is the Linux kernel, which consists of a number of

subcomponents that handle various parts of the kernel, such as drivers, cryptography and

file systems. While utilizing static analysis tools on the Linux kernel is nothing new, precise

interprocedural analysis still is a challenging problem for almost 30 million lines of code in

the Linux kernel. For this reason this thesis explores options for improving scalability and

performance of pointer analysis methods.

1https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Static-Analyzer-Options.html

2

https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Static-Analyzer-Options.html

1.3. Pointer Analysis Lukas Böttcher

1.3 Pointer Analysis

In general a pointer analysis tries to find the values of pointers in a program at runtime,

without having to execute the program. So naturally this problem is undecidable [Lan92]

following a reduction from the halting problem. As a result, performing a pointer analysis

becomes a delicate balancing act between precision and performance. Commonly, analyses

produce over-approximations of the targets each pointer can point towards at runtime while

other parts of an analysis might omit or under-approximate certain parts for the sake of

performance and scalability. As a result, these analyses are strictly speaking unsound or

soundy as put forward by [LSS+15]:

"We introduce the term soundy for such analyses. The concept of soundiness

attempts to capture the balance, prevalent in practice, of over-approximated

handling of most language features, yet deliberately under-approximated han-

dling of a feature subset well recognized by experts. Soundiness is in fact what

is meant in many papers that claim to describe a sound analysis. A soundy

analysis aims to be as sound as possible without excessively compromising

precision and/or scalability." [LSS+15]

Pointer analyses build the foundation for a variety of other static analyses such as value-flow

analyses, since call-graph generation is directly dependent on a prior pointer analysis in

order to resolve indirect or dynamic calls statically. Without pointer information most

static analysis algorithms are simply unable to reason about the state of a given program.

One common pointer analysis is the inclusion-based Andersen analysis [And94]. The details

of this type of analysis will be discussed later on, as it is the underlying basis for the

proposed algorithm in chapter 2. The Andersen algorithm sacrifices precision in favor of

performance and achieves an upper bound of 𝑂(𝑛3) where n represents the number of

pointer variables relevant to the analysis. This is known as the cubic bottleneck of general

Andersen analysis [MP21]. This showcases the trade-off that all non-theoretical pointer

analyses have to make in order to be applicable to real programs and avoid undecidability.

Furthermore, Andersen’s analysis is a P-complete problem and is therefore not trivially

parallelizable [MP21].

As a general abstraction, pointer analyses can be seen as complex graph problems where

programs are interpreted as graphs with nodes representing variables and edges representing

relations between nodes, such as memory allocations and assignments between variables.

This allows us to make use of a large body of previous research concerning graph problems

and transform the general analysis into a better defined mathematical problem.

3

1.3. Pointer Analysis Lukas Böttcher

Another analysis closely related to pointer analysis is alias analysis, where two pointers are

said to alias if their points-to sets have an intersection. An alias analysis produces a set of

relations over all nodes in the analysis graph where nodes can either NotAlias, MayAlias

or MustAlias. For two given nodes, 𝑎, 𝑏 and their points-to sets 𝑝𝑡𝑠(𝑎) and 𝑝𝑡𝑠(𝑏), the

following constraints describe the relations.

𝑎 NotAlias 𝑏 ⇐⇒ ∀𝑝𝑡𝑑 ∈ 𝑝𝑡𝑠(𝑎) : 𝑝𝑡𝑑 /∈ 𝑝𝑡𝑠(𝑏) (1.1)

𝑎 MayAlias 𝑏 ⇐⇒ ∃𝑝𝑡𝑑 ∈ 𝑝𝑡𝑠(𝑎) : 𝑝𝑡𝑑 ∈ 𝑝𝑡𝑠(𝑏) (1.2)

𝑎 MustAlias 𝑏 ⇐⇒ ∀𝑝𝑡𝑑 ∈ 𝑝𝑡𝑠(𝑎) : 𝑝𝑡𝑑 ∈ 𝑝𝑡𝑠(𝑏) (1.3)

Both pointer analysis, alias analysis, and points-to analysis are all terms commonly used

interchangeably in literature [Hin01]. From now on pointer analysis will be used in this

thesis to refer to this type of static analysis from which an alias relation can be derived

based on the pointer information.

A motivating example for pointer analyses is the detection of memory leaks in programs.

This occurs when a memory location is allocated on the heap, for example with a call to

malloc in glibc, and is not freed at a later stage in the program. It is in the interest of the

developer to find such faults as to not exhaust the computer’s memory during execution by

repeatedly allocating memory in the heap without freeing previous allocations. Finding such

logical errors can be accomplished via a related static analysis called data-flow analysis, that

tries to determine where specific data might flow in a program. Here pointer information

is vital, as pointers can represent lateral movement of data through the control flow of a

program, independent of direct assignments and read operations. Ultimately almost all

static analyses require some kind of information about pointers to fully determine the

state of a program. Aside from error detection such as memory leaks, optimizations are

another aspect of compiler systems, where pointer information is important to achieve

better results, see Listing 1. More often than not the pointer information alone does not

provide an immediate value to the compiler or analysis tool, instead other procedures build

on top of this information to derive valuable information about a program.

1.3.1 Notions of Sensitivity in Pointer Analysis

As previously established, a complete general pointer analysis is undecidable. For this

reason there are various notions of sensitivity when talking about pointer analysis. These

notions represent a compromise between precision, scalability and complexity of the analysis.

Following, some of the more common sensitivity notions will be illustrated to differentiate

4

1.3. Pointer Analysis Lukas Böttcher

#include <stdlib.h>
void *iter;
iter = value;

/* depending on the data at value's memory location
the loop might not be necessary */

while(*iter)
{

complex_computation(iter);
}

Listing 1: Optimizations in a c program

int a;
char b;
struct Person {

char *name;
int *age;

} p1, p2;
p1.age = &a; // the analysis can differentiate between p1.age and p1.name
p1.name = &b;

Listing 2: Field-sensitivity by example

the more complex analyses from the less complex analyses and explain the impact of these

sensitivities on actual performance when analyzing a program.

Field-sensitivity

Field-sensitivity describes how the pointer analysis algorithm handles structures in the

program. Most programming languages that expose memory management to a developer,

such as C, C++ or Rust, offer some form of structures to represent an object that internally

holds multiple values where these values might be pointers, that reference memory locations.

If an analysis is field-sensitive, each field of each struct is represented in the analysis as

an independent node that can point to unique memory locations, as long as the field can

be statically determined during the analysis, see Listing 2. If the field of a struct can not

be statically determined, for example because of an arithmetic operation that produces

multiple possible results for the offset during runtime, it is common for field-sensitive pointer

analyses to fall back to a field-insensitive mode for the specific struct, wherein all fields

of the struct are merged into a single abstract object. For the given example, p1.age and

p1.name can point to different memory locations. Alternatively a field-insensitive analysis

5

1.3. Pointer Analysis Lukas Böttcher

does not differentiate between any fields of a given struct at any point of the analysis.

Therefore, only two nodes are created to represent the struct, 𝑝1.* and 𝑝2.*. Another

common alternative is field-base-sensitivity, where instead of omitting the individual fields

of each struct, the fields of every struct are merged into a single instance of that struct.

As a result the Person structs, p1 and p2, would be represented as a single object with

fields name and age, such that p1.age == p2.age are represented by the same node in the

analysis.

Array-sensitivity

Array-sensitivity is conceptually similar to field-sensitivity but often has different effects

on the runtime of the analysis. For a given array 𝑖𝑛𝑡𝑎𝑟𝑟[100] an array-sensitivie analysis

would model each entry of the array, e.g. arr[0], arr[1], . . . , with a unique node, whereas an

insensitive analysis would model the array as a single node. Generally speaking arrays are

often homogeneous data structures that can hold a vast amount of data, compared to structs

which are often more compact as they model attributes instead of raw data. Therefore,

array-sensitivity if often omitted from whole program analyses, while field-sensitivity is

common among pointer analyses.

Scope of the analysis

When designing a pointer analysis one has to make a decision about how to handle external

code that the program depends on. Often times transitive dependencies of a program can

dwarf the original code by several magnitudes in size [TG17]. Even a basic Hello World

program in Java transitively depends on 3000 classes [KMZN16] from the Java standard

library. For this reason most analyses either ignore external library code during analysis,

or stub the most relevant library calls during analysis, such as malloc or free. This

trade-off is well worth it, as most interesting properties in pointer analysis do not originate

in external libraries, but the actual program code that is written by the developer. This

does however not solve the problem of standard library code mutating the program state

either via callbacks or mutation of values behind pointer arguments. Here, simply ignoring

the external code during analysis would greatly decrease the accuracy of the analysis. For

this reason, a lot of research is being done to develop methods that alleviate some of the

problems that arise from analyzing external dependencies of a given program. Caching

incremental results during analysis seems to be one of the most promising methods thus far

[MGR13], where instead of solving the pointer analysis problem from the top-down, the

analysis begins at the bottom and builds summaries for functions incrementally until a

6

1.3. Pointer Analysis Lukas Böttcher

int *manupulatePointer(int *ptr);
int main() {

int *a, *b;
b = manupulatePointer(a);
/* intraprocedural analysis is unable
to determine the state of a or b */

}

Listing 3: Limitations of intraprocedural analysis

result over the entire program is achieved. Hybrid approaches combining top-down and

bottom-up analysis represent state-of-the-art analysis methods in use by production static

analysis tools, such as Coverity [MGR13].

Interprocedural analysis

Another aspect that greatly influences the precision of analyses is whether they are inter-

procedural or intraprocedural. An intraprocedural analysis only analyzes each function

in an isolated context and disregards any influences on other functions or global state.

Interestingly most compilers rely mostly on intraprocedural analysis for bug detection as it

can be performed in parallel for each function independently and is in general much faster

than interprocedural analysis. The following example Listing 3 illustrates the shortcomings

of only performing intraprocedural analysis. Essentially parameter passing, especially

of pointers, is not taken into account properly for the calculation of points-to sets. An

interprocedural analysis overcomes these limitations by connecting parameters of functions

and the arguments at the respective call-sites as well as the resulting return values in the

graph structure that is used to solve the pointer analysis. Fundamentally an interproce-

dural analysis is related to another notion of sensitivity, context sensitivity, since every

context-sensitive analysis has to be interprocedural in order to capture the context of each

function call [Lin15].

Flow-sensitivity

When one performs a flow-sensitive pointer analysis, this means that the analysis takes

into account the control flow of the program when calculating points-to information. As

can be seen in Listing 4, a flow-sensitive analysis is in general more precise than a flow-

insensitive analysis. Meanwhile, running a flow-sensitive analysis can also be exponentially

more expensive to compute as every step in a programs control flow carries its own state

concerning points-to relations - especially when the control flow is complicated by complex

7

1.3. Pointer Analysis Lukas Böttcher

int *manupulatePointer(int *ptr);
int main() {

int a, b, *x; // x -> {}
if (something())

x = &a; // x -> {a}
else

x = &b; // x -> {a,b} ?
manupulatePointer(x);
/* a flow insensitive analysis computes
a points-to set {a,b} for x while in actuality
x = &b and x = &a are mutually exclusive statements
during execution */

}

Listing 4: Flow-sensitivity by example

conditional statements or recursive execution. Although this problem can be slightly

alleviated, by only considering program statements that manipulate pointers. Empirical

studies have shown that for context-insensitive analyses, adding flow-sensitivity to the

points-to calculation does not offer a significant precision improvement over flow-insensitive

analyses [Hin01]. This makes using a flow-sensitive analysis without context-sensitivity

unattractive as an initial analysis run. One should rather combine context- and flow-

sensitivity in subsequent analysis runs to refine the initial points-to results in certain regions

of code that profit from a further refinement. Using a flow-sensitive pointer analysis also

generates must-alias relations, compared to the comparatively imprecise may-alias relations

from a flow-insensitive pointer analysis. Generating definitive information that two variables

will unconditionally alias during runtime is very valuable when considering refactoring

optimizations by a compiler. While a sound may-alias analysis requires that no possible

alias relations are missed, a sound must-alias analysis requires analogously that no spurious

alias relations are reported. Both are respectively over- and under-approximations of the

true points-to results.

Context-sensitivity

As previously alluded to, context-sensitivity is directly related to interprocedural analyses,

since it governs how call sites and called functions are interpreted during the analysis.

More specifically a context-sensitive analysis tries to qualify variables both on the heap and

stack with contextual information such that different contexts can be established, where

for example points-to information for a variable differs, thus improving the precision of

the analysis. To achieve this, context-sensitivity can be modeled by using call-sites and

8

1.3. Pointer Analysis Lukas Böttcher

int *manupulatePointer(int *ptr);
int main() {

int a, b, *x;
x = &a;
manupulatePointer(x);
x = &b;
manupulatePointer(x);
/* a context-sensitive analysis evaluates both
calls to manupulatePointer as unique function calls
since the context differs between both calls */

}

Listing 5: Context-sensitivity by example

objects to differentiate and qualify the context for variables [SB+15]. Depending on the

programming language at hand, these methods can yield different precision. It has been

established that object-oriented languages like Java greatly benefit from object-sensitivity

over call-site-sensitivity, while more procedural languages like C benefit from call-site-

sensitivity. While a context-sensitive analysis would in theory provide more precision and

therefore decrease the average size of points-to sets, in practice most context-sensitive

pointer analyses, when applied to sizeable codebases, quickly grow out of control as the

analysis explodes in terms of running time and space requirements [SKB14]. In contrast,

context-insensitive analyses anecdotally scale better than context-sensitive analyses.

1.3.2 Andersen’s Analysis

Andersen’s analysis is an inclusion-based interprocedural pointer analysis algorithm first

proposed by [And94] in 1994. It is a field-sensitive, context-insensitive and flow-insensitive

analysis. The algorithm was one of the first constraint based algorithms introduced for

pointer analysis. Since it is lacking constext- and flow-sensitivity, it is often used as a

base algorithm which produced broad over estimations of the points-to data and is later

refined by more precise algorithms which improve the quality of the data and remove

false positives from the points-to information generated by Andersen’s algorithm. The

underlying idea is that the Algorithm operates on a given program by converting statements

from the program into mathematical constraints contained in a constraint graph. These

constraints can be classified into a few types which can be seen in Table 1.1. It is worth

noting that in literature the field-sensitivity aspect is often omitted from the definition of

the Andersen analysis, although it was included in the original specification. As mentioned

in chapter 1 the complexity of Andersen’s analysis grows exponentially with regard to the

9

1.3. Pointer Analysis Lukas Böttcher

Statement Name Description Constraint

𝑥 = &𝑎 alloca The address of a is
assigned to x. {𝑎} ⊆ 𝑝𝑡𝑠(𝑥)

𝑥 = 𝑦 copy Variable y is assigned
to x. 𝑝𝑡𝑠(𝑦) ⊆ 𝑝𝑡𝑠(𝑥)

𝑥 = *𝑦 load Load value of y and
assign to x. ∀𝑝 ∈ 𝑝𝑡𝑠(𝑦) : 𝑝𝑡𝑠(𝑝) ⊆ 𝑝𝑡𝑠(𝑥)

*𝑥 = 𝑦 store Store y into value of x. ∀𝑝 ∈ 𝑝𝑡𝑠(𝑥) : 𝑝𝑡𝑠(𝑦) ⊆ 𝑝𝑡𝑠(𝑝)

𝑥 = 𝑦.𝑓 field Field f of variable y is
assigned to x. 𝑝𝑡𝑠(𝑦.𝑓) ⊆ 𝑝𝑡𝑠(𝑥)

Table 1.1: Constraints of an inclusion-based pointer analysis.

number of pointer variables in a program. The reason for this exponential growth, among

other aspects, is the field-sensitivity. Depending on the structure of the code under analysis,

field-sensitivity might play the most influential part in the analysis’ complexity. This will be

further expanded upon in chapter 2. Ultimately this is the reason for specifically including

field-sensitivity when discussing Andersen’s analysis in this thesis. During execution an

Andersen style pointer analysis repeatedly applies the constraints until a point is reached

where no more changes are applied to the constraint graph at which point the execution

concludes and the points-to sets for each variable are returned.

1.3.3 Steensgard’s Analysis

Steensgard’s analysis was introduced in 1996 by [Ste96]. It was inspired by Andersen’s

analysis and as such is also an interprocedural pointer analysis. The key proposition of

Steensgard’s work was to improve the runtime of Andersen’s algorithm by using equalities

instead of subsets for the constraints that are used as inputs for the algorithm, an overview

for the constraints can be seen in Table 1.2 - the rules are nearly identical to the constraints

for the Andersen algorithm. The change from subsets to equalities leads to an almost linear

algorithm by utilizing union/find data structures for efficient computation of a fixpoint

solution for a given set of pointers. The trade-off for this faster algorithm is precision, since

Steensgard’s algorithm quickly loses precision compared to Andersen’s algorithm by losing

the small differences between points-to sets of individual variables by equating them. An

example for this precision loss can be seen in Listing 6.

10

1.3. Pointer Analysis Lukas Böttcher

int main() {
int a, b, *x, *y;
x = &a; // pts(x) = {a}
y = &b; // pts(y) = {b}
y = x; // pts(y) = pts(x) = {a,b}
/* by equating the points-to sets of x and y
the fact that x never points to b is lost
this leads to an obvious loss of precision */

}

Listing 6: Steensgard’s analysis quickly looses precision during analysis.

Statement Name Description Constraint

𝑥 = &𝑎 alloca The address of a is
assigned to x. 𝑝𝑡𝑠(𝑥) = {𝑎} ∪ 𝑝𝑡𝑠(𝑥)

𝑥 = 𝑦 copy Variable y is assigned
to x. 𝑝𝑡𝑠(𝑦) = 𝑝𝑡𝑠(𝑥)

𝑥 = *𝑦 load Load value of y and
assign to x. ∀𝑝 ∈ 𝑝𝑡𝑠(𝑦) : 𝑝𝑡𝑠(𝑝) = 𝑝𝑡𝑠(𝑥)

*𝑥 = 𝑦 store Store y into value of x. ∀𝑝 ∈ 𝑝𝑡𝑠(𝑥) : 𝑝𝑡𝑠(𝑦) = 𝑝𝑡𝑠(𝑝)

𝑥 = 𝑦.𝑓 field Field f of variable y is
assigned to x. 𝑝𝑡𝑠(𝑦.𝑓) = 𝑝𝑡𝑠(𝑥)

Table 1.2: Constraints of an equality-based pointer analysis.

11

1.3. Pointer Analysis Lukas Böttcher

1.3.4 Wave Propagation

Since its first introduction in 1994, there have naturally been many incremental improve-

ments to the Andersen style pointer analysis. Most current implementations are derived

from [PB09], specifically the Wave Propagation Method, which is a highly optimized version

of Andersen’s algorithm. In Wave Propagation the procedure is separated into an insertion

phase and a propagation phase. Furthermore, the constraint graph is topologically sorted

and acyclic, which enables the algorithm to pass forward the computed points-to informa-

tion in topological order, preventing redundant work since only set differences need to be

propagated to the next nodes. The algorithm is intended to be more memory intensive in

order to achieve better performance on large codebases [PB09]. The general algorithm for

wave propagation is listed in Algorithm 1.

1.3.5 LLVM - Generating Data for the Analysis

By now the fundamentals of pointer analysis have been introduced, which unilaterally

can be modeled as a graph problem. The missing part of the introduction is where the

underlying data for such a pointer analysis algorithm comes from or how it is derived from

a given program that has to be analyzed. Initially pointer analyses were solely implemented

in compilers to detect errors and find possible optimizations during compilation. As

compilers already employ an internal representation for the programs to be compiled, the

data generation was not problematic. As the scope of pointer analyses expands from

intraprocedural analysis part of a compiler towards standalone interprocedural whole

program analyses, it is clear, that a new representation for programs is needed, on which

analyses can run - independent of the compilation process.

During initial review of literature for pointer analysis multiple methods for data generation

were surveyed. Notably, simply parsing the source code was among the most common

data extraction methods for programs. Another method was to extract an intermediate

representation, called LLVM-IR, of the code during initial compilation of a program by

means of using the low level virtual machine, LLVM. Using LLVM has some distinct

advantages compared to parsing the source files of a program directly. For one, LLVM

provides multiple compiler front-ends for various compiled programming languages, including

C/C++ and Objective-C through the Clang compiler or Rust through the rustc compiler,

which allows one to compile multiple languages without having to adapt the parser, as

can be seen in Figure 1.1. Especially when working with older non-strictly standardized

versions of the C language, utilizing all available tricks of an established compiler proves to

be more resourceful compared to reinventing the wheel with new parsing tools. Secondly

12

1.3. Pointer Analysis Lukas Böttcher

Algorithm 1 General Wave Propagation Algorithm
Input: Constraint Graph 𝐺 = (𝑉,𝐸)
Output: Modified Constraint Graph 𝐺 = (𝑉,𝐸) and points-to information.

Detect strongly connected components and find topological sorting for 𝐺.
Build topological node stack 𝑇 .
repeat

changed = False
worklist = ∅
while 𝑇 ̸= ∅ do

node ← pop from T
for edge (node,target) ∈ 𝑜𝑢𝑡𝑐𝑜𝑝𝑦/𝑔𝑒𝑝(𝑛𝑜𝑑𝑒) do

pts(target) ← union pts(node) pts(target)
if pts(target) changed then

changed = True ∧ add target to worklist
end if

end for
end while
while worklist ̸= ∅ do

node ← pop from worklist
for edge (node,target) ∈ 𝑜𝑢𝑡𝑙𝑜𝑎𝑑(𝑛𝑜𝑑𝑒) do

for ptsDst ∈ 𝑝𝑡𝑠(𝑛𝑜𝑑𝑒) do
add copy edge (ptsDst, target) to 𝐺.
if edge added to 𝐺 then

changed = True
end if

end for
end for
for edge (src,node) ∈ 𝑖𝑛𝑠𝑡𝑜𝑟𝑒(𝑛𝑜𝑑𝑒) do

for ptsDst ∈ 𝑝𝑡𝑠(𝑛𝑜𝑑𝑒) do
add copy edge (src, ptsDst) to 𝐺.
if edge added to 𝐺 then

changed = True
end if

end for
end for

end while
if Edge added to 𝐺 then

changed = True
end if

until changed = False

13

1.3. Pointer Analysis Lukas Böttcher

Figure 1.1: Illustration of the LLVM toolchain from Lattner et al.

one can easily verify the correctness of the extracted data for a program by simply executing

the compiled intermediate representation since no matter the programming language, as

part of the LLVM toolchain the program always gets compiled into the intermediate

representation before being assembled and linked. The LLVM project provides specific

tools for executing programs in LLVM-IR format using a just-in-time compiler 2. Beyond

the binary intermediate representation, also called bitcode, there exists a human-readable

format. Both binary and text versions can be converted between with the LLVM tools

llvm-as and llvm-dis, see Listing 7 for a basic hello world program in human-readable

LLVM-IR.

LLVM Instructions

With the generated LLVM-IR we can now build a graph, by interpreting the individual

LLVM instructions as constraints for a chosen pointer analysis. The LLVM-IR uses static

single assignment (SSA) form for variables meaning that each variable can only be assigned

a single time in a specific control flow in the intermediate representation. The use of SSA

form is not directly relevant to Andersen style analyses but simplifies working with variables

conceptually, since no variable can be reassigned at any point of the program. At this

point it is also important to differentiate between address-taken variables and top-level

variables. Top-level variables’ values reside in registers and are conceptually ephemeral

2https://releases.llvm.org/9.0.1/docs/CommandGuide/lli.html

14

1.3. Pointer Analysis Lukas Böttcher

#include <stdio.h>
int main()
{

int i;
i = 10;
printf("Hello World! N = %d\n", i);
return 0;

}
// gets compiled into...

@.str = private unnamed_addr constant
[21 x i8] c"Hello World! N = %d\0A\00", align 1

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @main() #0 {

%1 = alloca i32, align 4
%2 = alloca i32, align 4
store i32 0, i32* %1, align 4
store i32 10, i32* %2, align 4
%3 = load i32, i32* %2, align 4
%4 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds

([21 x i8], [21 x i8]* @.str, i64 0, i64 0), i32 %3)
ret i32 0

}
declare dso_local i32 @printf(i8*, ...) #1

Listing 7: A basic hello world program in human-readable LLVM-IR.

15

1.3. Pointer Analysis Lukas Böttcher

while address-taken variables are abstract memory objects which logically reside in memory.

The specifics of memory locations and cpu registers are of course hardware specific and

depend on the target architecture that the LLVM backend assembles the intermediate

representation into. The connection between address-taken and top-level variables in the

LLVM-IR is established by the alloca instruction which maps a top-level variable to a

memory location represented by an address-taken variable. Following is an interpretation

of the LLVM instructions for Andersen’s pointer analysis.

Alloca Instruction The LLVM alloca instruction is used to allocate memory on the

stack.

; allocate a pointer to a 32 bit integer on the stack

; and save a reference at ptr

%ptr = alloca i32*, align 8

The analog of the alloca instruction in a pointer analysis is the address-of operation

𝑥 = &𝑎, since the top-level variable 𝑝𝑡𝑟 points to the abstract memory location holding

the actual value. This might come as a surprise, since the implementation of 𝑥 = &𝑎 in C

does not result in an alloca instruction in the LLVM-IR. This often leads to confusion

when interpreting points-to results that are built using the LLVM-IR. Nonetheless the

interpretation of the alloca instruction as an address-of pointer constraint is in line with

the constraints of the Andersen algorithm.

Load Instruction The LLVM load instruction loads the value of a top-level variable

into a new variable. Compared to the C programming language this is comparable to

dereferencing a pointer variable.

%ptr = alloca i32*, align 8

; load the pointer to the 32 bit integer from ptr into %var

%var = load i32*, i32** %ptr, align 8

When interpreting LLVM load instructions for a pointer analysis, we can treat it as the

complex load constraint that is already defined for Andersen’s analysis in Table 1.1. Again,

just like the alloca instruction, we can not draw a direct comparison between the definition

of the constraint 𝑥 = *𝑦 and the equivalent statement in the C language, since we are

working with the LLVM-IR in SSA form. The C equivalent of the load instruction would be

the dereferencing of *𝑦 alone. The assignment to x would require another store instruction.

16

1.3. Pointer Analysis Lukas Böttcher

Store Instruction The LLVM store instruction stores a value into a variable. The

variable might be a top-level or an abstract memory object represented by an address-taken

variable.

%ptr = alloca i32*, align 8

%var = load i32*, i32** %ptr, align 8

; store the literal value 10 into %var

store i32 10, i32* %var, align 4

The interpretation of the LLVM store instruction is similar to the load instruction. It can

be interpreted as the complex store constraint defined as part of Andersen’s analysis.

Getelementptr Instruction The LLVM getelementptr or gep instruction is used to

get subelements from an aggregate data structure such as arrays or structs. When the gep

instruction is invoked, it requires an index in order to perform the address calculation for

the subelement. Getelementptr does not access memory, it only finds the correct address

given a variable and an index.

int arr[10];

arr[5] = 10;

; create an integer array

%arr = alloca [10 x i32], align 16

; get the address for the 5th element

%idx = getelementptr inbounds [10 x i32], [10 x i32]* %arr,

i64 0, i64 5

store i32 10, i32* %idx, align 4

Since we intend to run a static analysis, we need to consider the properties of the index

value passed into the getelementptr instruction. Either the index is a constant value, and

we can forward the gep instruction together with the constant index into the static analysis,

or the index is a variable that is subject to change during execution, and we need to assume

that every possible value can be realized during execution, i.e. every offset for an aggregate

data structure might be referenced by such a gep instruction and this information must be

passed to the static analysis. This behavior is handled by differentiating between two types

of gep constraints in the pointer analysis, normal- and variant-gep constraints. The former

specifying a singular offset and the latter every possible offset for a given aggregate data

type, since the value can not be statically determined.

17

1.3. Pointer Analysis Lukas Böttcher

Copy Instruction and equivalent Instructions Other than the complex store, load

and the address-of constraints, the Andersen inclusion-based pointer analysis operates also

on simple constraints, see line 2 in Table 1.1. In terms of LLVM-IR instructions, we are only

interested in those instructions that manipulate pointers. In the LLVM-IR specification lots

of instructions can result in values being moved, including pointers. Therefore, we group

those instructions that can move values between symbols under the simple inclusion-based

copy constraint. The following instructions are interpreted as simple copy constraints:

• Phi instructions are part of the LLVM-IR to correctly resolve control flow. Depending

on the conditional branch a new SSA variable is introduced that holds the resulting

value from the branch. Since we are implementing a flow-insensitive pointer analysis

we do not differentiate between control flows and simply interpret each phi instruction

as a simple constraint connecting the conditional values to the resulting phi variable.

• Select instructions serve a similar purpose as phi instructions. Here a value is

selected conditionally without creating branches. As such we interpret the select

instruction as a simple constraint.

• Call instructions represent a function call. If the function call contains arguments the

caller arguments and callee parameters need to be interpreted as a simple constraint.

Beyond this, nothing is done to analyze the context of the function call, since we are

performing a context-insensitive pointer analysis.

• Like the call instructions, ret instructions are simply interpreted as simple constraints

so the returned function value is included in the pointer analysis.

• ThreadFork ThreadJoin are not LLVM-IR instructions. But just like the call and

ret instructions, these must be interpreted as function calls with simple constraints

in the context of pointer analysis.

• Lastly there are various instructions that are straightforward to interpret as simple

constraints, including bitcast, ptrtoint, constexpr, extractvalue and freeze in-

structions. Furthermore, variable argument values and external library call parameters

need to be handled like regular call instructions.

Now with alloca, load and store instructions introduced, we can analyze a basic example

by applying Andersen constraints to perform a pointer analysis. We are going to observe a

simple c program, which will compile into the following LLVM-IR.

18

1.4. Context-free Languages Lukas Böttcher

int *p, x, *q;

p = &x;

q = p;

%1 = alloca i32*, align 8

%2 = alloca i32, align 4

%3 = alloca i32*, align 8

store i32* %2, i32** %1, align 8

%4 = load i32*, i32** %1, align 8

store i32* %4, i32** %3, align 8

An example for applying the constraint rules according to the Andersen algorithm in

Table 1.1 can be observed in Table 1.3. The edge labels of the constraint graph are p, s, l,

c corresponding to points-to (inverse alloca), store, load and copy constraints. Furthermore,

the copy edges are immediately converted into points-to edges in order to simplify the

constraint graph in this example and reduce the number of steps.

1.4 Context-free Languages

Looking at the problem definition for an Andersen style pointer analysis, most algorithms

in the literature operate on graph data structures. In this section we will look at an

alternative interpretation of the pointer analysis problem where the problem can be solved

by transforming it into a graph-reachability problem which can be solved by using context-

free languages, i.e. CFL-reachability. This approach was first introduced for static analysis

purposes by [Rep98] and was found to be solvable in cubic time.

1.4.1 Definition of Context-free Languages and Grammars

A context-free language is a language that can be generated by a context-free grammar. A

context-free grammar is a 4-tuple 𝐶𝐹𝐺 = (𝑉,Σ, 𝑅, 𝑆) that holds a finite set of nonterminal

characters 𝑉 , a finite set of terminal characters Σ, a finite relation (rewrite rules) over

𝑉 × (𝑉 ∪ Σ)* and a start variable 𝑆 ∈ 𝑉 .

A prominent example for context-free languages is the balanced parenthesis language, which

is defined by:

1. 𝐶𝐹𝐺𝑏𝑝𝑎𝑟 = (𝑉,Σ, 𝑅, 𝑆)

2. 𝑉 = {𝑆}

3. 𝑆 = 𝑆

4. Σ = {(,)}

19

1.4. Context-free Languages Lukas Böttcher

Table 1.3: Example for Applying Andersen Constraints

Code Snippet to analyze / comment Constraint Graph

%1 = alloca i32*, align 8
%2 = alloca i32, align 4
%3 = alloca i32*, align 8

%1 %2 %3

𝑝 𝑥 𝑞

𝑝 𝑝 𝑝

store i32* %2, i32** %1, align 8

%1 %2 %3

𝑝 𝑥 𝑞

𝑝 𝑝 𝑝

𝑠

%4 = load i32*, i32** %1, align 8
store i32* %4, i32** %3, align 8
; create constraints from every
; instruction

%1 %2 %3

𝑝 𝑥 𝑞

%4𝑝 𝑝 𝑝

𝑠
𝑙

𝑠

; apply first store
; constraint rule(s)

%1 %2 %3

𝑝 𝑥 𝑞

%4𝑝 𝑝 𝑝

𝑠
𝑙

𝑠

𝑝

; apply last load and store
; constraint rule(s)
;
; finally p pts-to x
; and q also pts-to x

%1 %2 %3

𝑝 𝑥 𝑞

%4𝑝 𝑝 𝑝

𝑠
𝑙

𝑠

𝑝

𝑝

𝑝

20

1.4. Context-free Languages Lukas Böttcher

5. 𝑅 = {𝑆 → 𝜖, 𝑆 → 𝑆𝑆, 𝑆 → (𝑆)}

Given the grammar 𝐶𝐹𝐺𝑏𝑝𝑎𝑟 the language ℒ𝑏𝑝𝑎𝑟(𝐶𝐹𝐺𝑏𝑝𝑎𝑟) is defined as all words that can

be generated by the grammar or formally:

ℒ𝑏𝑝𝑎𝑟(𝐶𝐹𝐺𝑏𝑝𝑎𝑟) = {𝑤 ∈ Σ*|𝑆 ⇒*
𝐶𝐹𝐺𝑏𝑝𝑎𝑟

𝑤}

Words that are part of ℒ𝑏𝑝𝑎𝑟 are for example (()) or (()())() - in general all parenthesis

that are opened need to be closed at some point in a word. If we apply the concept of

context-free languages to graphs, we can easily define a reachability relation based on

context-free languages by interpreting edges as terminal characters and paths of edges, or

concatenations of edge labels, as words - as long as the edge labels of a given graph are

part of the alphabet for the context-free grammar. Given the following graph 𝐺:

0 1

2

3

(

)

(

𝑆

The CFL-reachability defined by the grammar 𝐶𝐹𝐺𝑏𝑝𝑎𝑟 would find node 2 to be reachable

by node 0, since the word "()" is part of ℒ𝑏𝑝𝑎𝑟. This computed reachability can be saved in

the graph, by inserting a new edge from node 0 to node 2 with the nonterminal label 𝑆,

representing the balanced parenthesis property.

1.4.2 Andersen Analysis via CFL-Reachability

With the knowledge about the Andersen constraints, a set of logical base facts along with

terminal characters can be defined for each constraint as can be seen in Table 1.4. Note

that each terminal character 𝑥 also has an inverse representation �̄� which represents its

inverse edge in the constraint graph. With these base facts one can define horn-clause

rules for a points-to relation [Rep98]. These horn-clauses can then be reinterpreted as a

context-free grammar via the respective production rules that represent an instance of the

Andersen pointer analysis problem, see Table 1.5.

𝑅 = {𝑃 → �̄�, 𝐶 → 𝑐, 𝑃 → 𝑎𝐶,𝐶 → 𝑎𝑙, 𝐶 → 𝑠𝑃}

𝐶𝐹𝐺𝑎𝑛𝑑𝑒𝑟 = ({𝑃,𝐶}, {𝑎, 𝑐, 𝑙, 𝑠, �̄�, 𝑐, �̄�, 𝑠}, 𝑅, 𝑃)

21

1.4. Context-free Languages Lukas Böttcher

Statement Name Base Fact Terminal Character

𝑥 = &𝑎 alloca alloca(a,x) a
𝑥 = 𝑦 copy simpleCopy(y,x) c
𝑥 = *𝑦 load complexLoad(y,x) l
*𝑥 = 𝑦 store complexStore(y,x) s
𝑥 = 𝑦.𝑓 field simpleField<N>(y,x) f<N>

Table 1.4: Context-free Grammar Terminals and Base Facts for each Andersen Constraint.
Field-sensitive base facts are implemented by a template e.g. one for each possible offset
value N.

With the context-free grammar, the points-to information can then be computed by

calculating the transitive closure of the points-to production rule 𝑃 . In general a variable x

points to a variable y iff a path 𝑥 ⇝ 𝑦 exists such that the word created by the ordered

edge labels of the path is in the language ℒ(𝐶𝐹𝐺𝑎𝑛𝑑𝑒𝑟) defined by the grammar. In fact,

most interprocedural static analyses can be implemented this way by using a context-free

grammar. One of the first times this approach was mentioned in the context of a pointer

analysis was [ZR08] where context-free reachability was used to implement a demand-driven

flow-insensitive alias analysis. This proved to be a faster and more resource efficient

approach compared to other demand-driven alias analyses at the time.

1.4.3 Context-free Path Queries via Matrix Multiplications

While the transformation of the Andersen problem statement into a reachability relation

on top of a context-free language is a helpful mathematical abstraction, it does nothing to

improve performance, scalability or precision of the whole program Andersen algorithm.

Subsequently, [AG18] proposed a matrix multiplication based approach that works with

graph data and allows path queries by means of context-free grammars. The general answer

to a path query is a set of triples of the form (𝑃, 𝑎, 𝑏), such that there exists a path in the

graph from node a to node b with a path labeling derived from the nonterminal P according

to [AG18]. The central idea for the algorithm is to solve these context-free path queries by

calculating the transitive closure of matrices. These matrices are constructed by capturing

the adjacency matrices of each individual terminal edge label from the graph. Given two

of these boolean adjacency matrices, we can compute the transitive closure by repeatedly

multiplying them until no more changes are applied. To simplify these operations we

can convert our context-free grammar that we derived from the Andersen constraints into

Chomsky normal form. After the conversion of a grammar 𝐺 = (𝑉,Σ, 𝑅, 𝑆) into Chomsky

22

1.4. Context-free Languages Lukas Böttcher

Statement Horn-clause rule Production

𝑥 = &𝑎
pointsTo(x,a):-

alloca(a,x) {𝑃 → �̄�}

𝑥 = 𝑦
pointsTo(x,a):-

simpleCopy(y,x),
pointsTo(y,a)

{𝑃 → 𝑐𝑃}

𝑥 = *𝑦

pointsTo(x,a):-
complexLoad(y,x),
pointsTo(y,z),
pointsTo(z,a)

{𝑃 → �̄�𝑃𝑃}

*𝑥 = 𝑦

pointsTo(a,b):-
complexStore(y,x),
pointsTo(x,a),
pointsTo(y,b)

{𝑃 → 𝑃𝑠𝑃}

Table 1.5: Context-free Grammar Productions and Horn-clauses for each Andersen Con-
straint.
Field-sensitive rules are omitted for simplicity.

normal form we are left with productions in the following form:

𝑃 → 𝐴𝐵, for 𝑃,𝐴,𝐵 ∈ 𝑉 (1.4)

𝑃 → 𝑣, for 𝑃 ∈ 𝑉 ∧ 𝑣 ∈ Σ (1.5)

Following this, we iterate through all production rules in the form of Equation 1.5 and

populate the adjacency matrices, then we iterate through all production rules in the form

of Equation 1.4 and apply the matrix multiplications to find the transitive closures for

each of these productions. An elaborate proof for the correctness of this approach can

be found in [AG18]. Note that the cited paper uses a singular matrix containing sets for

all edge relations between nodes instead of multiple boolean matrices for each edge type.

This does not have any effect on the correctness of the algorithm and simply improves

the performance, since boolean matrices can be represented more efficiently than matrices

of sets. By rearranging the Andersen algorithm as repeated matrix multiplications, we

indirectly profit from decades of research into efficient linear algebra algorithms. In this case

we utilize a subset of linear algebra algorithms, specifically sparse boolean linear algebra.

Whenever linear algebra is involved, it is often a good idea to use accelerators such as

GPGPUs to speed up the calculations.

Next we will consider a basic pointer analysis example to illustrate the context-free path

23

1.4. Context-free Languages Lukas Böttcher

query approach that uses matrices for the calculation. The input constraint graph that we

will use as an input for the Andersen style analysis is derived from the following c code:

int main()

{

int *p, x, *q;

p = &x;

q = p;

}

define dso_local i32 @main() #0 {

%1 = alloca i32*, align 8 ; p

%2 = alloca i32, align 4 ; x

%3 = alloca i32*, align 8 ; q

store i32* %2, i32** %1, align 8

%4 = load i32*, i32** %1, align 8

store i32* %4, i32** %3, align 8

ret i32 0

}

Which results in the following graph.

0

p

1

2 5

x

4 3 6

q
𝑝

𝑝

𝑝
𝑙

𝑠

𝑠

This is the same code snippet from Table 1.3, compiled into LLMV-IR and interpreted into

an Andersen constraint graph.

If we take the context-free grammar we defined for an Andersen style analysis from

subsection 1.4.2 and convert it into Chomsky normal form, we arrive at the following

production rules and grammar.

𝑅 = {𝑃 → 𝑝, 𝐶 → 𝑐, 𝑆 → 𝑠, 𝐿→ 𝑙, 𝑃 → 𝐶𝑃,𝐶 → 𝑆𝑃,𝐶 → 𝑃𝐿}

𝐶𝐹𝐺𝑎𝑛𝑑𝑒𝑟 = ({𝑃,𝐶, 𝐿, 𝑆}, {𝑎, 𝑐, 𝑙, 𝑠, }, 𝑅, 𝑃)

Following this we iterate through all production rules of the form Equation 1.5 and create/fill

boolean adjacency matrices for each nonterminal with the associated edges from the graph,

where an edge (𝑎, 𝑏, 𝑙) from node 𝑎 to node 𝑏 with label 𝑙 is represented in the matrix

24

1.4. Context-free Languages Lukas Böttcher

element 𝐿𝑎,𝑏.

𝑃7×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐶7×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐿7×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑆7×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
With these initial matrices in place, we now iterate over all production rules in the form

of 𝑃 → 𝐴𝐵, for 𝑃,𝐴,𝐵 ∈ 𝑉 , see Equation 1.4, which we apply by multiplying the

corresponding nonterminal matrices. Note that we use the inverse matrix if we encounter a

negated nonterminal. Looking at 𝐶 → 𝑆𝑃 , one of these production rules for Andersen’s

analysis, we update the 𝐶7×7 matrix as follows

𝐶7×7 = 𝐶7×7 + 𝑆7×7 × 𝑃7×7

𝐶7×7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐶7×7 + 𝑆7×7

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

× 𝑃7×7

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Here a copy relation was added from node 2 to node 0. We repeat this operation for all

these production rules until no more changes take place in the matrices. This can be done

efficiently by storing the number of non-zero elements, nnz., for each matrix and only

multiplying for a given production rule, if either of the RHS matrices have changed nnz

values. Finally we arrive at the following matrix for the 𝑃 nonterminal corresponding to

25

1.4. Context-free Languages Lukas Böttcher

the points-to relation:

𝑃7×7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fortunately this is the same result we arrived at when manually applying the Andersen

constraints in Table 1.3.

Since the transformation of the context-free grammar into a normal form can lead to a

substantial increase of required matrices, [OEAG20] introduced a context-free path querying

algorithm that utilizes the Kronecker product to realize recursive finite state machines which

in turn do not require normalized grammars and can operate on the original context-free

grammar for Andersen style pointer analysis. Unfortunately the Kronecker calculation is

much more complex than conventional matrix multiplications and thus this convention did

not yield performance improvements.

Further research by a research team collaborating with developers from JetBrains, a

developer of integrated development environments, found that for synthetic graph data,

GPU accelerated sparse boolean linear algebra were a promising method for context-free

path queries [MSS+19]. Furthermore, this research lead to a software library designed

specifically for sparse boolean linear algebra, spbla [OKKG21]. This library utilizes

GPGPUs either through CUDA or OpenCL to accelerate boolean linear algebra operations.

Unfortunately the current state of the spbla project’s3 codebase contains errors for which

reason the idea of using context-free path queries via matrix multiplications for solving

Andersen’s analysis was abandoned in favor of a more direct CUDA based implementation,

see chapter 2. During the writing of this thesis another library with a focus on static

analysis, SVF4, introduced support for context-free path queries [LSDZ22]. Although the

software developed as part of this thesis makes heavy use of the SVF library in chapter 2,

standalone context-free path querying approaches for solving pointer analyses were not used

during development as the support was introduced in SVF during the late development of

PTAGPU.

3https://github.com/JetBrains-Research/spbla
4https://github.com/SVF-tools/SVF

26

https://github.com/JetBrains-Research/spbla
https://github.com/SVF-tools/SVF

1.5. Related Work Lukas Böttcher

Figure 1.2: Overview of the SVF library from [SX16]

1.5 Related Work

1.5.1 SVF

As mentioned in section 1.3, a pointer analysis is the basis for many types of static analyses.

One such analysis framework is SVF5, a project that aims to enable scalable and precise

interprocedural static value-flow analysis [SX16]. The SVF tool consists of a number of

subcomponents that represent individual analysis use cases, such as use-after-free and

source-sink error detection [SYX14b], whole program pointer analysis and on-demand

value-flow analysis [SX18] to name a few. SVF as a framework also allows users to extend

and implement custom analysis solutions that build on top of the subcomponents that

make up SVF and LLVM, which serves as a base and data source for SVF, see Figure 1.2.

This gives SVF a degree of modularity that other current static analysis frameworks, such

as [SXW+18], often lack.

Currently, SVF requires version 14 of the LLVM project and makes extensive use of internal

data structures. At the core of the SVF analysis tools is the LLVM-IR which is used to derive

information from the source code of a program. Internally this intermediate representation

is augmented into the SVF-IR, a graph data structure that models the program assignment

graph, short PAG. The PAG is a mostly immutable graph that contains all program

instructions and incorporates a model for the memory SSA. All further analyses use the

PAG as a root of information from which the analysis results are derived. See Figure 1.3

for the resulting PAG of the example program in Table 1.3.

The typical analysis run with SVF starts off with a pointer analysis that first derives a

constraint graph from the PAG, similar to the procedure described in subsection 1.3.2. The

constraint graph is then fed into a pointer analysis algorithm such as the state-of-the-art

interprocedural Andersen style Wave Propagation algorithm, see Algorithm 1. The result

5http://svf-tools.github.io/SVF

27

http://svf-tools.github.io/SVF

1.5. Related Work Lukas Böttcher

Figure 1.3: The PAG for the Example from Table 1.3 computed by SVF. Green edges
representing an alloca instruction, blue edges stores and red edges loads.

is an over-approximated points-to set for each top-level variable and address-taken variable,

as well as a call-graph, that represents an over-approximation for each direct and indirect

function call. Given the points-to information, SVF performs an initial mod-ref analysis run

to find interprocedural side effects of variables. Given mod-ref and pointer information, defs

and uses are then annotated in each procedure with alias sets of abstract memory objects

that might be accessed indirectly by loads and stores. SVF also allows users to specify a

memory partitioning strategy whereby the heap can be partitioned with varying granularity

to allow for precision and scalability trade-offs. The properties that are of interest here are

specifically the def-use chains of address-taken variables of pointers, which are difficult to

compute compared to the def-use chains of top-level variables which are already available if

the program is in SSA form [SX16]. The difficulty arises from the seeming ambiguity of

indirect accesses to address-taken variables through loads and stores in the program. After

connecting defs and uses of variables, the result is a value-flow graph, or sparse value-flow

graph depending on the specified analysis details, that can then be used for more concrete

analyses, e.g. use-after-free memory leak detection [SYX14b] or fed back into a more precise

pointer analysis algorithm to increase precision with the gained value-flow information.

This thesis focuses on pointer analysis, thus, the details of pointer analyses inside SVF are

especially relevant. SVF provides a wide set of pointer analyses to choose from, see Figure 1.4

taken from SVF’s technical documentation6. The components of each implementation can

be split into three groups, the Graph, which is a data structure derived from the PAG, that

describes where the pointer analysis should be performed. A set of Rules, which dictate how

points-to information should be derived from each statement in the Graph. And a Solver

which dictates the order in which the Rules are to be applied on the Graph, according to

[SX16]. A user can then choose which components to reuse and which to replace or augment

with custom algorithms or data structures. This modular approach makes it convenient to

experiment with different in-memory representations of points-to data, as well as testing

different methods for solving the constraint graph. The software developed in chapter 2

6https://github.com/svf-tools/SVF/wiki/Technical-documentation

28

https://github.com/svf-tools/SVF/wiki/Technical-documentation

1.5. Related Work Lukas Böttcher

Figure 1.4: The class hierarchy of pointer analysis implementations in SVF.

29

1.5. Related Work Lukas Böttcher

will use SVF as a basis for the pointer analysis and reuse parts of SVF during the analysis.

1.5.2 Graspan

Graspan is a disk-based parallel graph system designed for computing transitive closures on

very large graphs defined by context-free grammars. It was first introduced by [WHZ+17]

with a CPU backend and later in [ZWH+21] with a GPU-based backend. Disk-based means,

that a given constraint-graph is divided into smaller subgraphs, called partitions, that are

stored on non-volatile memory and loaded into memory in pairs to calculate the transitive

closures in steps that can lead to the desired pointer information - or any other static

analysis solution that can be defined by a context-free grammar, see subsection 1.4.2. This

approach is similar to many of the design decisions taken by common "BigData" solutions,

such as Apache Kafka and Spark, where disk-based solutions are common.

Graspan is meant to be run on a single machine, hence the emphasis on saving memory

by offloading to the disk. Another implementation that improves upon the ideas from the

Graspan paper is [GZJ+20] where the computation is distributed across multiple nodes,

making use of other "BigData" concepts.

Overall Graspan was able to perform a pointer analysis for the Linux kernel in 10.9 minutes

with the GPU version [ZWH+21], while other tools fail to perform on graphs as large as

the Linux kernel’s constraint graph, which contained 250 million edges after preprocessing

and inlining in Graspan. It should be noted that this result was achieved with a flow- and

field-insensitive context-free grammar.

In terms of data structures, Graspan has specific requirements. The graph data is large,

sparse and dynamic, consequently Graspan uses different in-memory representations for

the graph in the CPU and GPU version. The CPU version uses two arrays of (𝑑𝑠𝑡, 𝑙𝑎𝑏𝑒𝑙)

pairs that represent the old and new outgoing edges for each node while the GPU version

uses a sparse bit vector representation that, while containing the same information as the

CPU arrays, is optimized for GPU SIMT parallelism. See Figure 1.5 for an illustration of

the GPU optimized sparse bit vector data structure from [ZWH+21]. Internally this GPU

optimized data structure is inspired by prior work from [MBP12] which will also be used in

chapter 2 to develop PTAGPU.

30

1.5. Related Work Lukas Böttcher

Figure 1.5: Data structure for the constraint graph in the Graspan GPU version, from
[ZWH+21]

Figure 1.6: Adjacency Plot for the Constraint Graph of the Linux Kernel

31

Lukas Böttcher

Chapter 2

PTAGPU

This thesis presents a software library named PTAGPU, the name is derived from pointer

analysis (PTA) and graphics processing unit (GPU). As the name suggests the core idea is

to use GPUs for the purpose of performing a pointer analysis. The library PTAGPU was

developed as a whole program analysis module inside the SVF framework which is in turn

built on top of the LLVM compiler system.

2.1 Integrating PTAGPU into SVF

As described in subsection 1.5.1 the SVF framework is capable of processing the LLVM-IR

of a compiled program and capture the individual LLVM-IR instructions in a program

assignment graph, which can then be used to perform a pointer analysis on the program.

When SVF is launched for the purpose of a whole program analysis, the program assignment

graph is further processed into a constraint graph that holds all relevant constraints for an

initial pointer analysis, see Table 1.1. At this point the constraint graph is passed into a class

that inherits from the PointerAnalysis class, see Figure 1.4 for an overview of the pointer

analysis class hierarchy in SVF. Since our goal is to implement a custom pointer analysis, we

can inject out own implementation at this stage as a PointerAnalysis subclass. Specifically

we inherit from the Andersen class which is itself a subclass of the PointerAnalysis class

that implements the Andersen inclusion-based pointer analysis algorithm in SVF. By

extensive use of runtime polymorphism, most of SVF is implemented via virtual member

functions - a construct specific to C++ - allowing for function overriding in subclasses.

This makes implementing a custom pointer analysis easy as we can reuse most of the

initialization steps and program assignment graph processing from the superclasses. Part of

the processing is an initial topological sorting and the previously mentioned interpretation of

33

2.2. Goal of the Algorithm Lukas Böttcher

the LLVM-IR instructions into a constraint graph. As a result we end up with a constraint

graph and all strongly connected components of said graph when we initialize our PTAGPU

class that inherits from the Andersen class. The in-memory representation of constraint

graphs or generic graphs in SVF is more akin to a linked list data structure where each

node carries references to all outgoing and incoming edges and those edges carry references

to source and destination nodes as well as auxiliary information, which is an ideal memory

model for iterative algorithms such as the default Andersen algorithm where the algorithm

works from one node to the next. Unfortunately this memory model is not ideal for parallel

processing. For this reason we initially reinterpret the constraint graph into a more fitting

data structure. While iterating through the entire constraint graph, we differentiate by edge

types and collect all (𝑠𝑟𝑐, 𝑑𝑠𝑡) edge pairs in standard library vectors. If we refer back to the

design principles of SVF in subsection 1.5.1, where pointer analyses were conceptually split

into three components, the Rules, the Graph and the Solver, we effectively implement our

own Graph component by using a different linear memory representation for the constraint

graph. The underlying goal of putting the constraint graph into a linear in-memory data

structure is to allow us to more easily copy the memory region containing the relevant

information into GPU device memory, which is where our pointer analysis will operate on

the data. Similar to the Graph component, we also modify the Solver and Rule components

in the custom analysis implementation. The details of the implementation will be described

in detail in section 2.3.

2.2 Goal of the Algorithm

Our goal is to use the provided program assignment graph from SVF and the derived

constraint graph to compute a points-to set for each pointer variable in the program. Overall

our algorithm is supposed to serve as an initial pointer analysis pass in the SVF framework.

Together with the pointer information we can then proceed to build an over-approximated

call-graph. One might assume that no pointer information is needed for SVF to build a

call-graph for a given program. Unfortunately indirect function invocations, where functions

are indirectly accessed via pointers, require us to build pointer information in order to create

an over-approximated and soundy call-graph. The over-approximate nature stems from the

imprecision of Andersen’s analysis. This limitation always remains, no matter the algorithm

used for the pointer analysis, since pointer analyses are fundamentally undecidable as was

mentioned in section 1.3. It is important to consider that the initial pointer analysis does

not directly produce much valuable information for static analysis purposes. Instead, we

use the pointer information produced by the initial analysis for the call-graph which is then

34

2.3. Design of the Algorithm Lukas Böttcher

used to refine the analysis result by applying a more precise flow- and/or context-sensitive

analysis that produces the relevant results, which can then be used to derive value-flow

information that can directly be used for actual analysis purposes. Since the SVF analysis

framework aims to apply a more precise pointer analysis at a later stage, one might argue

that it would be wise to start off with such an analysis. For small programs this is a viable

strategy, unfortunately these more precise analyses are currently not scalable for a whole

program analysis of larger software and are only applied on-demand [SX16]. This is also

one of the motivations for trying to accelerate the initial Andersen analysis specifically since

it is performed on the entire program and thus can in theory profit from the parallelism

of GPUs. Concluding, PTAGPU is intended to serve as an initial whole program pointer

analysis in SVF. The results of PTAGPU can then be used by subsequent analyses to

improve the precision of the points-to data.

2.3 Design of the Algorithm

The PTAGPU library uses CUDA1, an application programming interface language from

NVIDIA, to program GPUs in C++. CUDA accommodates developers with a collection

of abstractions that simplify operations with GPU compute and memory. NVIDIA also

provides a standalone library for common parallel operations such as sorting and trans-

formations named Thrust2 which is also employed by PTAGPU for common sorting and

deduplication operations. In principle all calculations that are executed with a GPU are

denoted as kernels in CUDA. While GPU kernels and CPU code can be shared, CUDA

provides some intrinsic operations that can only function when executed on a GPU. Likewise,

all CPU operations that rely on external libraries or non standard-library code are not

supported in GPU kernels.

2.3.1 CUDA Architecture

The CUDA programming model revolves around blocks of threads. Whenever a kernel is

launched on the GPU, a set number of blocks is specified to work on the kernel. Each block

of a kernel executes the same code with the same number of threads. Thread blocks are

further divided into Warps, which are a collection of 32 threads each. This type of parallel

processing is called SIMT, for single instruction, multiple threads. In reality a Warp is

more analogous to a single vectorized operation that executes 32 units of work or lanes

at once than a collection of individual threads, although each thread in a Warp has its
1https://developer.nvidia.com/cuda-toolkit
2https://docs.nvidia.com/cuda/thrust/index.html

35

https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/thrust/index.html

2.3. Design of the Algorithm Lukas Böttcher

own instruction address counter. Having instruction address counters per thread allows

independent branching, resulting in thread divergence. The divergence is implemented

by executing each conditional branch sequentially for all threads in a Warp and disabling

the threads that do not execute the specific branch. This way each thread in a Warp

always executes the same instruction if active. Since branches are not executed in parallel,

thread divergence is discouraged if possible for performance reasons. These specifications

of Warps are uniform in all CUDA hardware and resemble a single group of work that can

be scheduled on the device specific number of multiprocessors. To more easily differentiate

between different generations of hardware, the CUDA programming model is segmented into

tiers of compute capabilities, where newer hardware with newer capabilities receives a higher

compute capability. Each CUDA capable device has a number of streaming multiprocessors,

in short SMs, which themselves have a certain amount of L1 shared memory and number of

registers per core among other resources. While this is similar to how CPU cores operate,

GPU programming uses a flat memory hierarchy with less reliance on caching and more on

raw memory bandwidth. For this reason each core in an SM has a relatively large register

file so that a single CUDA thread commonly uses hundreds of registers. The entire work

that is to be performed by a single kernel is called a grid, which is divided evenly into blocks,

which are divided into Warps. Both the grid and each block can be indexed in up to three

dimensions, which is useful for working with shaders, global illumination rendering and less

useful for static analyses. To start a computation, a collection of thread blocks are assigned

to the available SMs of a GPU. Depending on the hardware and compute capability, a

single SM can execute multiple Warps from the assigned thread blocks in parallel as long

as enough resources are available in the SM. The execution order of individual Warps is

handled by a Warp scheduler on each of the SMs, that decides what Warps get executed at

what time. The purpose of over-provisioning SMs with more blocks/Warps than they can

concurrently execute is that when a single Warp executes a memory read/write operation

other Warps can execute while the device is busy fetching the data. Key specification for

each SM of a certain compute capability are the following:

• Memory Bandwidth per SM

• Total shared memory per SM

• Max number of threads per SM

• Max number of blocks per SM

• Total number of registers of all cores in SM
3https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

36

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

2.3. Design of the Algorithm Lukas Böttcher

Figure 2.1: A single SM of an A100 GPU.
Taken from an NVIDIA Blog Post3

37

2.3. Design of the Algorithm Lukas Böttcher

Occupancy

Since each SM has multiple limited resources that can be controlled by the developer,

namely register count, shared memory and thread count, a kernel has to be designed with

these limitations in mind such that a maximally concurrent execution is possible. Given a

device with compute capability 8.0 and a kernel that requires 256 registers per thread while

also running 256 threads per block, we would essentially limit our execution to a single

block per SM, since a device with compute capability 8.0 has 64K available registers per

SM. This might be disadvantageous, since the SM is in theory capable of working on up

to 1024 threads. We might profit from reducing the amount of registers used per thread

and thus increasing the occupancy on our GPU. Counterintuitively high occupancy does

not always lead to better performance. Some programs disproportionately profit from the

use of a single resource. For example compute intensive kernels require more registers per

thread than kernels that are heavily reliant on memory operations. Increasing the use of

shared memory does not always lead to a performance improvement and decreasing the

number of required registers is not always possible. PTAGPU is very compute intensive,

compared to typical GPU algorithms. As a result, a large number of registers are required

during computation, which limits the maximal occupancy on the GPU.

Memory Accesses in CUDA

While modern GPUs can in theory perform multiple TFLOPS of calculations per second,

effectively all calculations are limited by memory bandwidth. Consequently, how we access

the GPU memory is very important for the overall performance of our analysis. Specifically

coalesced memory accesses of individual Warps, where consecutive threads access consecutive

memory addresses, are important, so the memory read operation can be performed within a

single transaction and not multiple strided reads. The GPU memory controller on modern

graphics cards can typically execute memory read or write operations in granularities of

32 bytes up to 128 bytes in total. As a result it is for example more efficient to load a

single byte of memory per thread in a Warp, compared to loading 8 bytes per thread, since

we would exceed the maximum of 128 bytes per memory transaction and require multiple

memory accesses. In terms of time needed per instruction, global memory operations are

typically two orders of magnitude slower compared to operations on SM registers or shared

memory in L1 cache. For this reason CUDA programs can perform exponentially worse if

memory accesses are random or strided inefficiently instead of coalesced. PTAGPU uses

coalesced memory accesses per Warp to minimize the overhead associated with reading and

writing GPU memory.

38

2.3. Design of the Algorithm Lukas Böttcher

Figure 2.2: Diagram of the CUDA memory architecture for an A100 GPU.
Taken from [Pra20].

Unified Memory

When CUDA code is executed on a 64-bit host system, the developer can use a single

memory address space for host and device memory. Using this unified memory address space

allows memory access from both CPU and GPU in the same address space without explicit

memory copy operations. The memory in question is moved implicitly to the device that

performs the read operation. The CUDA API also allows the developer to assign preferred

residency for specific memory regions, as well as prefetching memory asynchronously for

a device. When prefetching is properly employed, unified memory can achieve the same

performance as dedicated device memory [Nik16]. The major advantage of unified memory

is the fact that the memory allocation size is only limited by system memory, not device

memory. This allows a CUDA program to potentially hold vastly more data in memory than

would be possible within only GPU memory, while also moving the needed memory regions

without much involvement of the developer. Crucially this keeps large data structures intact

without splitting and partitioning them for incremental loading into GPU memory. This

mirrors some core ideas of Graspan subsection 1.5.2 where parts of the graph are written

to disk to conserve memory usage. Since many high performance computing environments

have vastly more main memory available than individual GPUs have device memory, this

theoretically enables us to expand the scope of our analysis without requiring specialized

GPU hardware with more device memory.

CUDA Streams

GPUs are massively parallel. Oftentimes developers do want to perform multiple computa-

tions encapsulated in kernels in parallel. These computations require memory operations

39

2.3. Design of the Algorithm Lukas Böttcher

Figure 2.3: CUDA Stream: Serial Model vs Concurrent Model by Lei Mao licensed under
CC BY 4.0; an illustration for the advantages of the CUDA stream API.

before and after to load and store the data they operate on. Since most GPUs allow

for concurrent memory and compute operations it is desirable to be able to efficiently

schedule concurrent operations such that while one kernel executes, another performs

memory operations. Because kernels are launched asynchronously, we can utilize CUDA

streams to string together multiple compute and memory operations, so that they are

executed in order without interfering with other streams. The GPU is then able to efficiently

schedule multiple streams in order to maximize GPU utilization, see Figure 2.3 for an

illustration. By default, all CUDA operations are executed on the default stream and thus

memory operations block each other. Streams have to be created by the developer and are

represented by structs in the program. These elements are then passed as arguments to the

CUDA API function calls to specify what operation use which stream.

2.3.2 Initialization of CUDA code

As soon as the constraint graph is handed over to the CUDA section of PTAGPU some

global state is initialized with the information from the constraint graph. This includes

various counter variables for the number of nodes in the graph, as well as the initial unified

memory allocations. When the counter for the number of nodes is first initialized the node

count is read from the constraint graph and increased by 20 percent to reserve headroom

for new nodes that might be added to the constraint graph during the execution of the

algorithm. This ensures that each node has a well-defined place in memory that can not be

overwritten by subsequent nodes. In the current implementation, the algorithm allocates a

fixed amount of unified memory accessible from the CPU and GPU. While this requires

over-provisioning of memory for a given analysis without knowing the exact amount needed

40

https://creativecommons.org/licenses/by/4.0/

2.3. Design of the Algorithm Lukas Böttcher

for the pointer analysis, dynamic allocation proves to be very challenging as it is difficult

to deduce the exact required amount of GPU memory from a given constraint graph for a

pointer analysis. Furthermore, the allocated unified memory is further split into partitions

of fixed size for the individual relations of the Andersen analysis. This includes three

memory regions for pointer relations, one for copy relations and two regions for load and

store relations between nodes. See the following diagram for the memory layout of an

example allocation of 32 GiB of unified memory and the resulting memory regions.

ffff ffff

b000 0000

pointer constraints

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

includes all pointer relations
that have been computed
at any stage

afff ffff

8000 0000

current pointer constraints

7fff ffff

4000 0000

next pointer constraints

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

these memory regions are used
to compute the delta updates
for the pointer relations

3fff ffff

1000 0000

copy constraints

⎫⎪⎪⎪⎬⎪⎪⎪⎭
these are the simple
copy constraints

0fff ffff
0800 0000 load constraints

07ff ffff
0000 0000 store constraints

⎫⎪⎬⎪⎭ static memory
does not change once written

Since a pointer analysis in general does not create new load or store relations in the

constraint graph, these memory regions do not increase in size after initialization. Notably

the pointer relations are split into three separate memory regions. This is needed for

diffpoints calculations. This specific optimization was inspired by [SX16] and [MMP10]

among other works and will be explained in detail in section 2.3.5. After memory allocation

41

2.3. Design of the Algorithm Lukas Böttcher

is completed, CUDA streams are initialized for concurrent write operations into each memory

region, as well as one stream for each of the available devices to enable computation on

multiple GPUs in parallel. Finally, every bit in the entire allocation of unified memory

is set to one by cudaMemset. This ensures that the memory is not in an undefined state.

Furthermore, we can utilize this when reading from memory, since a memory region with

all bits set to one represents unused space.

2.3.3 Sparse bit vectors

At the core of PTAGPU all edges of the constraint graph are stored in sparse bit vectors.

Sparse bit vectors are a data structure that can be used for storing binary values, such as

adjacency information of a graph. Sparse bit vectors are especially suited to represent edges

of very sparse graphs and allow for dynamic addition of new edges and nodes, something

other sparse graph representation such as the compressed sparse row format do not facilitate.

Since the constraint graph of pointer analysis problems is typically very sparse [MBP12],

sparse bit vectors are an ideal data structure for pointer analysis on the GPU. Find the

adjacency plot for the constraint graph of the Linux kernel in Figure 1.6 as well as on

overview for select open source programs and their constraint graph densities in Table 2.2.

Individual bit vectors contain three separate components, a base value, a set of bits and a

next pointer. For the bit vectors to efficiently work, the entire codomain of the directed

edge relation of a graph is split into evenly sized partitions. The edges of each partition, if

it contains edges, are then stored in the bits of a bit vector. If we omit empty partitions of

the edge codomain, we create a set of sparse bit vectors. The base value of each sparse bit

vector represent the current offset for all bits in the bit vector. Similar to linked lists, sparse

bit vectors reference the next sparse bit vector in a field. This allows iteration through

adjacent outgoing edges of a specific type for a given node by working through the next bit

vectors until there is no next bit vector defined. The head bit vector for each node is stored

in a pre-defined memory location, which is directly derivable from the node index. The

exact position for each node in each memory region can be calculated by multiplying the

node index with the width of a single element in a sparse bit vector. This offset is then

added to the overall offset of the memory region to find the head bit vector for a specific

edge type of a node, see Listing 8 for the implementation in PTAGPU. Following, each

unit in the sparse bit vector linked list will be called an element, as is conventional for

linked lists. When deciding on the memory characteristics of the individual elements, the

traits of the CUDA API and hardware need to be taken into consideration. One possible

optimization are coalesced memory accesses, where consecutive threads in a Warp access

consecutive memory locations. Furthermore, we can optimize the memory operations of a

42

2.3. Design of the Algorithm Lukas Böttcher

// src it the node for which we want to find the head bit vector
// rel is the andersen relation for which we want to find the outgoing edges
__host__ __device__ index_t getIndex(uint src, uint rel)
{

switch (rel)
{
case PTS:

return OFFSET_PTS + (ELEMENT_WIDTH * src);
case PTS_CURR:

return OFFSET_PTS_CURR + (ELEMENT_WIDTH * src);
case PTS_NEXT:

return OFFSET_PTS_NEXT + (ELEMENT_WIDTH * src);
case COPY:

return OFFSET_COPY + (ELEMENT_WIDTH * src);
case LOAD:

return OFFSET_LOAD + (ELEMENT_WIDTH * src);
case STORE:

return OFFSET_STORE + (ELEMENT_WIDTH * src);
}
return src * ELEMENT_WIDTH;

}

Listing 8: Calculating the correct index of a node’s head bit vector in unified memory.

Warp such that we access 128 bytes in total per Warp, since this allows us to fully saturate

the memory controller while only requiring a single coalesced memory transaction [MBP12].

If we take the optimal memory transaction of 128 bytes and split it evenly across all 32

threads of a Warp, we get 4 bytes of memory associated with each thread. As a result we

set the size of each element to 128 bytes and each thread in a Warp manages a single word

or 4 bytes of the element. Coincidentally an unsigned integer is 4 bytes wide on 64-bit

systems, thus each thread accesses its memory in the form of an unsigned integer. Using

unsigned integers also has the advantage of allowing for simple bitwise operations, which

are required since we store individual bits in the 4 bytes of memory instead of numerical

values for most of the words in each element. Numerical values are only stored in the base

and next words of the element. Each sparse bit vector element has the following layout.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Data

B
as

e

N
ex

t

Words

43

2.3. Design of the Algorithm Lukas Böttcher

64-bit Addresses

This sparse bit vector layout is inspired by the layout presented in [MBP12]. The notable

difference being a switch from 32-bit to 64-bit addresses to reference the next element in

a sparse bitvector. This is a requirement for using an address space larger than 16 GiB,

since we are addressing 4-byte wide words. While this reduces the data density of each bit

vector by 4 bytes, the theoretical address space of 64 exbibytes, or 266 bytes, is worth the

trade-off as it eliminates any upper limits on memory allocation in the software.

Inserting new bit vectors

If our algorithm ever reaches a point where we need to add a new edge into an element

with a mismatched base, we are required to create a new element with the correct base and

append it to the linked list of bit vectors by referencing the correct memory address in the

next field. Since we are operating on multiple nodes concurrently, we need to keep track

of the already occupied memory for each of the memory regions representing the different

edge types. This is achieved by utilizing some of the counters from the CUDA initialization.

These are incremented via atomic CUDA instructions each time a new element is created.

Using atomic operations allows for a synchronized state of used memory across the entire

grid and prevents Warps from overwriting already used memory.

2.3.4 Edge Insertion

With the concept of sparse bit vectors established and required variables initialized, the

PTAGPU algorithm can begin inserting the linear in-memory representation of the constraint

graph derived from SVF, see section 2.1, into sparse bit vectors residing in unified memory.

The core idea is to handle all edge labels concurrently in individual streams by invoking

an edge insertion kernel for each type of edge. Inside each kernel every source node is

processed by a single Warp which inserts the outgoing edges into the correct memory

location of the correct element inside the sparse bit vector for the given source node. In

order to efficiently distribute the work across all available SMs, some preprocessing is

needed before each insertion kernel is launched. Given a set of edges of the same type

to be preprocessed for insertion, for example all store edges in the constraint graph, the

preprocessing steps are illustrated in Figure 2.4. The preprocessing steps are made up of

four steps, 1) the linear in-memory representation of the constraint graph is copied into

device memory via cuda::memcpy 2) all edge tuples (𝑠𝑟𝑐, 𝑑𝑠𝑡) are sorted with 𝑠𝑟𝑐 as the

key, 3) the algorithm iterates through all (𝑠𝑟𝑐, 𝑑𝑠𝑡) pairs and eliminates all duplicates,

44

2.3. Design of the Algorithm Lukas Böttcher

Figure 2.4: Preprocessing of edges during edge insertion.

4) the algorithm iterates through all (𝑠𝑟𝑐, 𝑑𝑠𝑡) pairs and saves the index each time src

changes in a third offset array. Since we are operating on linear memory, we can utilize the

CUDA thrust library to accelerate these operations on the GPU. Step 2 can be performed

by the thrust::sort algorithm and step 3 and 4 can be performed at the same time by

thrust::unique_by_key_copy. One small but important detail is that before we start the

preprocessing we insert a pair of UINT_MAX values into the array for the source indices and

into the array for the destination indices. Having one additional pair assures that step 3

writes the end index for the last actual (𝑠𝑟𝑐, 𝑑𝑠𝑡) pair into the offset array.

After the preprocessing is done, all three arrays are fed into an insertion kernel that

distributes all source nodes among the available Warps, which then insert the destinations

indices into the elements of the sparse bit vector. Insertion into the element first calculates

the correct base and then sets the correct bit to one if an element already exists, else a new

element is first created.

The example in Figure 2.5 showcases the process for inserting a single edge into an empty

sparse bit vector in the insertion kernel. Later insertions always check whether a base is

already defined in each element of the sparse bit vector and insert the edges accordingly.

The base of subsequent elements in the sparse bit vectors is always sorted in ascending order

for efficient random access. To maintain the order, whenever new elements are created, for

example if a given base is not yet present in a sparse bit vector, elements might have to be

shifted around to maintain the order. In practice these insertions are executed for each

source node in parallel by multiple Warps on the GPU.

45

2.3. Design of the Algorithm Lukas Böttcher

Example insertion of an edge pair (3, 66).
This is achieved by finding the correct element in the sparse
bit vector for node index 3 and setting the correct bit to 1 for node 66.

1) Calculate 𝑏𝑎𝑠𝑒 = 66/(29 * 32) = 0; 𝑤𝑜𝑟𝑑 = (66%(29 * 32))/32 = 2; 𝑏𝑖𝑡 = 66%32 = 2
2) Find the head element for node 3 by using the getIndex function from Listing 8.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

UUU Head element in the sparse
bit vector for node 3.

1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

UINT bit representation of
2nd index in element.
Initially all bits are set to 1.

Since the base at index 29 in the head element is uninitialized (all bits set to 1),
we can overwrite the base with the base we calculated for node 66 in step 1.
Additionally we set the second bit in the second word to 1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 UU

0 0 1 0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

After inserting the edge (3, 66)
into the sparse bit vector.
Notice that the base is set
to 0 and both words for the next
index are still set to UINT_MAX
marked by a U, since no next
element currently exists.

Figure 2.5: An example procedure for inserting a single edge into a sparse bit vector.

2.3.5 Concurrent Graph Rewriting

As soon as all required edges from the constraint graph have been inserted into the correct

sparse bit vectors, the Solver part of PTAGPU needs to apply the Andersen constraints

from Table 1.5 on the graph in order to calculate the correct points-to sets. As with all

calculations on the GPU we need to explicitly take care of concurrency. Similar to the edge

insertion kernel, the ideal method of distributing work on the GPU is to assign units of

work to individual Warps with minimal thread divergence. When applying the production

rules introduced in Table 1.5 we can achieve this by simply using a worklist to spread out

all node indices from the constraint graph across all available Warps. This way each Warp

handles the outgoing rewrite rules for a single node. Furthermore, this removes any need for

specialized scheduling, because in the case that one Warp takes comparatively more time

than others, the other Warps simply request new node indices to work on. The inherent

synchronization of the worklist already takes care of optimally distributing the work.

Unfortunately we cannot simply use the production rules from the context free grammar

approach in Table 1.5. The reason being that these rules can not be mapped onto strictly

unidirectional rewrite paths in the graph. As an example, consider the copy production

rule 𝑃 → 𝐶𝑃 . If we interpret this production rule in the context of graph rewriting, we get

46

2.3. Design of the Algorithm Lukas Böttcher

Figure 2.6: Taken from [MBP12], illustrates the problem of cross node mutation when
applying unmodified Andersen constraints.

Statement Name Rewrite Rule

𝑥 = 𝑦 copy 𝑥
𝑐−1

−−→ 𝑦
𝑝−→ 𝑧 ⇝ 𝑥

𝑝−→ 𝑧

𝑥 = *𝑦 load 𝑥
𝑙−1

−−→ 𝑦
𝑝−→ 𝑧 ⇝ 𝑥

𝑐−1

−−→ 𝑧

*𝑥 = 𝑦 store 𝑥
𝑝−1

−−→ 𝑦
𝑠−1

−−→ 𝑧 ⇝ 𝑥
𝑐−1

−−→ 𝑧

Table 2.1: Final unidirectional, partly inverted Graph Rewriting Rules proposed by [MBP12].
Field-sensitive rules are omitted, since they are exclusively handled on the CPU in PTAGPU,
see subsection 2.3.6.

that for every node v with an outgoing copy edge to node x and an outgoing points-to edge

to w, we need to add a new points-to edge from x to w. The problem arises when multiple

Warps operating on outgoing edges of different nodes, simultaneously try to mutate another

node’s outgoing edges. See Figure 2.6 a) for an illustration of this problem from [MBP12].

A key insight from [MBP12] was that, "Parallel execution of the rewrite rules . . . requires

synchronization in the graph data structure.". The intuitive solution to this problem is

shown in Figure 2.6 b). For most constraints, simply inverting the edges is enough to

allow for concurrent addition of new edges into the sparse bit vectors without mutatung

another node’s outgoing edges. The resulting graph rewriting rules from [MBP12] are listed

in Table 2.1. These new rewrite rules can be interpreted as strictly unidirectional paths

in the constraint graph, meaning that when a node x is processed by a Warp, new edges

are only added to node x and not to any of the adjacent nodes. One remaining problem

is, that the store rewrite rule currently requires inverse points-to edge information which,

if additionally stored, would greatly increase the required memory by keeping track of

outgoing and incoming points-to edges at the same time for each node to allow efficient

access. The proposed solution to this problem from [MBP12] is to apply the store rewrite

rules in two steps. First all node pairs (𝑥, 𝑦) are collected such that y has outgoing store

edges and points to x. Second all pairs with matching x are assigned to the same Warp

and the resulting inverse copy edges are added to the sparse bit vectors of x, denoting the

47

2.3. Design of the Algorithm Lukas Böttcher

destinations of the outgoing inverse store edges from node y. Using this method requires

one additional step compared to the copy and load rules, but this step can be processed

very efficiently with thrust library calls, similar to the edge insertion routine. With this

two-step procedure in place, we can preserve the property that each Warp only appends

outgoing edges to the sparse bit vector of it’s currently assigned node and refrain from

explicit synchronization.

Rule Application Algorithm

With both data structures and graph rewrite rules in place and optimized for operation on

the GPU, the main algorithm of PTAGPU can be launched. The pseudocode for the most

important procedures of PTAGPU is available, the main loop can be found in Algorithm 2.

The first step is to execute the initialization steps from subsection 2.3.2. Since we want to

Algorithm 2 Main Algorithm of PTAGPU
initialization steps
while new points-to edges written into memory ∧ not done do

run updatepts kernel ◁ see Algorithm 3
launch CPU code asynchronously ◁ see Algorithm 9
run copy/load/storecollect kernel ◁ see Algorithm 4
sort (𝑥, 𝑦) pairs for the store constraints
split pairs by unique x component
run store kernel ◁ see Algorithm 8
await asynchronous CPU execution
insert new edges found by CPU code
report memory statistics and new edge count ◁ optional

end while
free memory and pass results back to SVF

apply all rewrite rules of the Andersen style analysis until no further changes are applied,

we perform the application of the rules in a while loop that breaks if no changes are

detected after one iteration finishes. We can observe the changes by counting the number

of recently added points-to edges present in the newPts sparse bit vectors. While it might

seem inefficient to count through all elements in each iteration of the loop, this can be done

very efficiently, since we employ massively parallel GPU kernels. If changes to the points-to

memory region have been detected, the algorithm continues with updating the newPts,

currentPts and oldPts memory. This serves the purpose of preventing redundant work,

by only applying rewrite rules on the points-to edges that have been added since the last

iteration. This process is called a delta-update or diffpoints-update, the specifics of this

optimization are presented in section 2.3.5 and the pseudocode is available in Algorithm 3.

After delta-updates are done, all points-to edges that are new since the last iteration are

48

2.3. Design of the Algorithm Lukas Böttcher

Algorithm 3 Update Points Kernel
for each node i in constraint graph do

traverse nextPoints sparse bit vector for node i
collect all set bits
compute Δ𝒫 = 𝑛𝑒𝑥𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ∖ 𝑜𝑙𝑑𝑃𝑜𝑖𝑛𝑡𝑠 ◁ find all new bits by excluding the old
update 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑖𝑛𝑡𝑠 = Δ𝒫; 𝑜𝑙𝑑𝑃𝑜𝑖𝑛𝑡𝑠 = Δ𝒫 ∪ 𝑜𝑙𝑑𝑃𝑜𝑖𝑛𝑡𝑠; 𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠 = ∅
if Δ𝒫 ≠ ∅ then

set done to false
end if

end for

present in the currentPts memory region. Before launching the first kernel for the rewrite

rules, we can launch the CPU portion of our analysis asynchronously. In practice this is

realized by using C++ asynchronous futures. See subsection 2.3.6 for the details of this

forked CPU portion of the main loop.

While the asynchronous CPU code executes on a different set of CPU threads, the first

GPU kernel can be launched. The parameters for CUDA kernel launches include the block-

and gridsize, as well as amount of shared memory and stream assignments. Since GPUs

have a set amount of SMs that can process thread blocks in parallel, it is a good idea to split

the entire body of work into at least as many thread blocks as SMs are available. During

development both an RTX 2080 and a RTX 3080 Ti with 48 and 82 SMs respectively were

used. The PTAGPU algorithm queries the available GPUs’ SM count and uses it as the

gridsize. Because the first GPU kernel processes the bulk of all rewrite rules, it heavily uses

registers in each thread during execution. An individual thread requires over 128 active

registers to apply the rewrite rules. As such we are limited to 64K registers per thread

block per the specifications of the CUDA compute capabilities 7.0 and up. Following this

hardware limitation is the fact that we can at most create 256 threads per thread block in

order to not overflow the available registers per SM. The result is a blocksize of 256, which

is split into eight addressable Warps of size 32 each.

PTAGPU also includes experimental support for multi-GPU CUDA execution. This requires

a unique stream per device which are initialized in the initialization steps, see subsection 2.3.2.

The stream, together with 256 bytes of shared memory and the grid-/ blocksize specifications,

make up the arguments for the first kernel launch. Later kernel launches, including the edge

insertion kernel, follow the same process for finding optimal launch parameters. Further-

more, CUDA provides helper functions such as cudaOccupancyMaxPotentialBlockSize

for finding the optimal grid- and blocksizes of a specific kernel.

The pseudocode for the first GPU kernel is available in Algorithm 4 as well as subsequent

device function invocations. As a brief summary, the Copy Load Storecollect kernel

49

2.3. Design of the Algorithm Lukas Böttcher

Algorithm 4 Copy Load Storecollect Kernel
smem ← allocate 256 bytes of shared memory per Warp
upperlimit ← totalNodeCounter
src ← incrementWorklist()
while src < upperlimit do

applyRewriteRule<Copy>(src,smem) ◁ see Algorithm 5
applyRewriteRule<Load>(src,smem)
src ← incrementWorklist()

end while
upperlimit ← totalStoreCounter
src ← incrementStoreWorklist()
while src < upperlimit do

applyRewriteRule<CollectStore>(src,smem) ◁ collect store/pts pairs
src ← incrementStoreWorklist()

end while
reset worklists

loops through all nodes in the constraint graph and assigns them to available Warps by

using a worklist approach. The node that is assigned to a Warp at any time is called the

origin node. As soon as a Warp receives an origin node from the constraint graph, the copy,

load and the first step of the store rewrite rule are applied in this order. See Table 2.1 for

an overview of the rewrite rules that were established by [MBP12]. Each rewrite rule is

applied by a template function, see Algorithm 5. Template functions are a C++ construct

Algorithm 5 template<Type> applyRewriteRule procedure
Input: src: currently processing node

smem: shared memory
index ← getIndex(src)
repeat

bits ← memory[index + threadIdx.x]
collectBitvectorTargets<Type>(src,bits,smem) ◁ see Algorithm 6
index ← nextBits

until index ̸= ULLONG_MAX
if Type = StoreCollect then

insert all pairs (𝑠𝑟𝑐, 𝑠𝑚𝑒𝑚[:]) into store map ◁ later used in the store kernel
else

mergeBitvectors(src,smem) ◁ see Algorithm 7
end if

that allows using placeholder parameters. Each function invocation with different template

parameters results in a different symbol during compilation. While using templates in

C++ is good practice for writing reusable, efficient, and error-free code, here we use the

fact that CUDA supports templates in device function to prevent the PTX compiler from

assuming recursion and falsely limiting the available number of threads to prevent register

50

2.3. Design of the Algorithm Lukas Böttcher

exhaustion.

Inside the applyRewriteRule function, depending on the current rewrite rule, the destina-

tions of all outgoing edges of a certain type are collected by the collectBitvectorTargets

function, see Algorithm 6. The destinations of the outgoing edges are collected by traversing

Algorithm 6 template<Type> collectBitvectorTargets procedure
Input: to: currently processing node

bits: of the head element in to’s sparse bit vector
smem: shared memory

if bits ̸= 0 then
for i = 0...31 do

if (1«i) ∧ bits then ◁ check if bit is set
target ← base * (29*32) + threadIdx.x * 32 + i
append target to smem ◁ target represents the destination of the edge

end if
end for

end if

the correct sparse bit vector of the origin node, element by element. Following this, all

outgoing edges of the collected destination nodes are merged with the outgoing edges

of the current origin node of the Warp. For example, applying the copy rewrite rule

𝑜𝑟𝑖𝑔𝑖𝑛
𝑐−1

−−→ 𝑦
𝑝−→ 𝑧 ⇝ 𝑜𝑟𝑖𝑔𝑖𝑛

𝑝−→ 𝑧 PTAGPU first collects all targets of the outgoing inverse

copy edges, then merges all the outgoing points-to edges from the collected nodes with

the outgoing points-to edges of the origin node. This is realized by the mergeBitvectors

function, see Algorithm 7, at the end of the applyRewriteRule function. In principle the

bitwise merging of two sparse bit vectors works exactly the same as during edge insertion,

shown in Figure 2.5, during initialization. Notably, applying the storeCollect rewrite

rule, does not merge any sparse bit vectors, but instead collects store and points-to pairs

which are later processed in another kernel for the reasons outlined in the beginning of

subsection 2.3.5. After all rewrite rules are applied and worklists are reset, the first kernel

execution concludes.

Following the first kernel execution in Algorithm 4, the store and points-to pairs previously

collected are preprocessed by the thrust library, see Figure 2.4 for an overview of the

preprocessing steps, and then fed into the second GPU kernel Algorithm 8 where the last

rewrite rule is finally applied.

After the second and final kernel execution, we await the conclusion of the asynchronous

CPU procedure. Since the CPU procedure stores all new edges it finds in a pair of vectors,

representing the adjacency information of all new edges, we can insert all new edges into

the sparse bit vectors by reusing the edge insertion code from the initialization phase.

51

2.3. Design of the Algorithm Lukas Böttcher

Algorithm 7 mergeBitvectors procedure
Input: to: node that outgoing edges are merged into

smem: array of nodes whose outgoing edges are to be merged with to
for from ← smem do

toIndex ← getIndex(to) ◁ find the index of the head element
fromIndex ← getIndex(from)
while next element ̸= ULLONG_MAX do

if fromBase = toBase then
merge element at fromIndex into toIndex

else if fromBase < toBase then
insert new element before toIndex ◁ elements are sorted by base

else
if toIndex has next element then

toIndex ← toNext
else

create new element after toIndex and insert fromIndex
end if

end if
toIndex ← toNext ◁ read next elements in sparse bit vectors
fromIndex ← fromNext

end while
end for

Algorithm 8 Store Kernel
smem ← allocate 256 bytes of shared memory per Warp
for some x of collected (𝑥, 𝑦) pts/store−1 pairs do

for each unique y of collected (𝑥, 𝑦) pts/store−1 pairs do
append y to smem

end for
mergeBitvectors(x,smem) ◁ see Algorithm 7

end for

52

2.3. Design of the Algorithm Lukas Böttcher

At the end of each iteration of the main loop PTAGPU optionally presents the current

memory usage and distribution among the memory regions for debugging end evaluation

purposes. This includes statistics for the elapsed time of each component in PTAGPU - as

measured by the C++ chrono4 library.

Diffpoints Updates

If the main loop of PTAGPU were to repeatedly iterate and apply the same rewrite rules

on every node, every iteration would repeat the work of the previous iteration, making

the algorithm very inefficient. This problem does not only apply to PTAGPU, all pointer

analyses need to prevent excessive repeating of already finished work. As such many

implementations use a concept called diffpoints or delta-updates that is meant to prevent

redundant work. Also, pointer analyses inside SVF make use of diffpoints in order to speed

up the calculations.

Diffpoints work by dividing the points-to relations calculated during application of the

constraints into separate sets. One set describing all new edges that are calculated in the

current iteration, one set for all points-to edges calculated in the previous iteration and

one set for the bulk of all prior points-to edges. As can be seen in Algorithm 3, the update

process between iterations can be realized by simple set operations or more optimized

bitwise operations.

Δ𝒫 = 𝑛𝑒𝑥𝑡𝑃𝑜𝑖𝑛𝑡𝑠 ∖ 𝑜𝑙𝑑𝑃𝑜𝑖𝑛𝑡𝑠

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑖𝑛𝑡𝑠 = Δ𝒫 ∧ 𝑜𝑙𝑑𝑃𝑜𝑖𝑛𝑡𝑠 = Δ𝒫 ∪ 𝑜𝑙𝑑𝑃𝑜𝑖𝑛𝑡𝑠 ∧ 𝑛𝑒𝑤𝑃𝑜𝑖𝑛𝑡𝑠 = ∅

After the update at the beginning of each iteration, all procedures apply the rewrite rules

on the currentPoints set and write new points-to edges into newPoints. With diffpoints

in place we can ensure that each rewrite rule is only processed once, since any points-to

edges are only in the set currentPoints exactly once.

One problem that arises from using diffpoints, is the fact that whenever a new copy edge is

added into the constraint graph - which can happen dynamically by applying rewrite rules -

the next iteration does not process all points-to edges that need to be considered because

of the addition of the copy edge. Instead, only those points-to edges are processed, which

are in currentPoints. The straightforward solution to this problem is to always explicitly

work through all relevant points-to edges in oldPoints whenever a new copy edge is added.

This ensures that no points-to edges are skipped during processing.

4https://en.cppreference.com/w/cpp/chrono

53

https://en.cppreference.com/w/cpp/chrono

2.3. Design of the Algorithm Lukas Böttcher

// Launch an asynchronous task
std::future<int> result = std::async([]() {

// Perform some long-running computation
int sum = 0;
for (int i = 0; i < 1000000000; ++i)
{

sum += i;
}
return sum;

});

// Do something else in the meantime
std::cout << "Hello, world!" << std::endl;

// Wait for the asynchronous task to complete
int final_result = result.get();
std::cout << "The final result is: " << final_result << std::endl;

Listing 9: C++ Sample illustrating Asynchronous Futures

2.3.6 Combining CPU and GPU execution

PTAGPU strives to achieve optimal concurrent execution. This includes not only all GPU

cores, but also all CPU cores. To achieve this, parts of the main loop, see Algorithm 2, are

split into an asynchronous CPU execution. This asynchronous CPU part is implemented

with asynchronous futures. Asynchronous futures are a feature of the C++ programming

language that allows for the implementation of asynchronous programming. Asynchronous

programming allows for the concurrent execution of multiple tasks within a single program,

enabling improved efficiency and scalability. By using asynchronous futures, developers

can write code that can take advantage of multiple cores or perform time-consuming tasks

without blocking the main thread of the program. This can greatly improve the performance

of C++ programs, especially on systems with multiple CPU cores or heterogeneous compute

capabilities. See the following basic example in Listing 9.

To further improve the scalability of the CPU portion of PTAGPU, the asynchronously

executed code is parallelized using OpenMP pragmas. The pseudocode for the CPU

code is available in Algorithm 9. As we do not make use of multiple CPU cores in any

other part of the program, we can utilize a majority of the available CPU cores for the

asynchronous execution. The calculation that is performed on the CPU reads the available

points-to information to resolve all getelementpointer edges in the constraint graph.

While other GPU implementations of Andersen’s analysis, such as [MBP12], also perform

the gep calculations on the GPU, this leaves the CPU mostly idle during the execution.

54

2.3. Design of the Algorithm Lukas Böttcher

Algorithm 9 CPU async procedure
typedef pair<vector<uint>,vector<uint» edgeSet ◁ type for adjacency information
procedure asyncCPU(edgeSet *ptsSet, edgeSet *copySet)

#pragma omp parallel for num_threads(16)
for each GEP edge in constraint graph do

dstPTS ← ∅
srcPTS ← collectBitvectorTargets<PTS>(edge.src)
for id in srcPTS do

fieldOffsetNode ← consCG->getGepObjVar(id, edge.offset)
#pragma omp critical ◁ only executed by one thread at a time
append fieldOffsetNode to dstPTS

end for
#pragma omp critical
for id in dstPTS do

addPts(edge.dst,id)
end for

end for
updateCallGraph(getIndirectCallsites()) ◁ these are SVF superclass methods
// some of getIndirectCallsites’s internal function calls are
// overwritten to use unified memory instead of SVF data structures

end procedure

Furthermore, parallelizing the application of gep constraints is not as easily done as for the

copy, load and store constraints, since each gep instruction carries an offset value. Given

the offset value and the points-to target of a node we need to calculate the correct abstract

memory object that the offset references. This can be done on the GPU as demonstrated by

[MBP12], but is more efficient to implement on a CPU, since gep instructions can reference

random regions in memory, which would require explicit synchronization on the GPU and

slow down the application of the other rewrite rules. Beyond difficult synchronization

on a GPU, it is also ideal to use the CPU for gep constraint resolution, since PTAGPU

is directly integrated into SVF, which already offers a variety of optimized methods for

gep constraint resolution. Lastly the asynchronous CPU code also resolves all indirect

call-sites and updates the call-graph. Arguably this is one of the most important aspects of

PTAGPU that differentiates it from other GPU implementations of Andersen’s analysis.

Indirect call-site resolution is often omitted from academic implementations like [MBP12],

[ZWH+21] or [SYX14a]. Because an over-approximated call-graph is one of the fundamental

results of a pointer analysis next to points-to information as described in subsection 1.5.1,

resolving indirect call-sites is an important step for the analysis to be usable by further

analyses inside SVF. Furthermore, connecting the arguments and parameters at indirect

call-sites is required to produce complete pointer information.

55

2.4. Experimental Results Lukas Böttcher

2.3.7 Feeding the Results back into SVF

At some point PTAGPU concludes its calculation and has produced a constraint graph

inside unified memory, which includes an over-approximation of the points-to set for each

pointer variable. On its own the constraint graph in the form of sparse bit vectors is

not digestible by SVF. For this reason an interface is created to enable SVF to use the

points-to information produced by SVF. Internally the PointerAnalysis superclass inside

SVF provides an alias method that takes two node indices and outputs the alias relation

of both nodes. To provide pointer information for SVF, PTAGPU overwrites the alias

method with its own implementation that reads points-to edges from the sparse bit vectors

inside unified memory and outputs one of the possible alias relations from Equation 1.1

and Equation 1.2. One of the consumers of this information is the SVF test suite5 which

will be used in subsection 2.4.1 for verifying the results PTAGPU produces against a know

corpus of test programs that include various pointer relations.

Beyond points-to information, the updateCallGraph method in Algorithm 9, which resolves

indirect call-sites, also requires access to the points-to information of PTAGPU. To facilitate

this, some SVF implementations for call-site resolution are overwritten in PTAGPU to

redirect the reading of points-to information into the unified memory. The benefit of using

C++ polymorphism to overwrite these internal methods from SVF is that the points-to

information can remain in unified memory and does not have to be explicitly written back

into main memory to enable SVF to access it. This improves performance without impeding

the functions of SVF.

2.4 Experimental Results

To validate PTAGPU in terms of correctness and performance, various test cases and

benchmark programs were used. Following, the experimental results are split into correctness

testing and performance testing. While for correctness testing a pre-defined test suite was

used, a collection of current open source programs of varying complexity was compiled for

real world performance testing.

5https://github.com/SVF-tools/Test-Suite

56

https://github.com/SVF-tools/Test-Suite

2.4. Experimental Results Lukas Böttcher

int main()
{

int a,b,*c,*d;
c = &a;
d = &a;
MUSTALIAS(c,d); // c and d may alias each other
NOALIAS(&b,d); // the address of b and d must not alias

}

Listing 10: A unit test in the PTABENCH test suite.

2.4.1 Test Suite

For correctness testing the PTABENCH6, a subproject of the SVF framework, was used.

The PTABENCH repository includes a set of small test programs that are compiled into

LLVM bitcode. These test programs contain a set of constraints that represent a state that

should be reached by the respective analyses during testing. The test suite implements unit

tests for all variants of pointer analysis included in SVF as well as more complex analyses,

such as memory leak detection and multithreaded flow analyses. Part of the test corpus are

specific edge cases that test against quirks of real programs, such as SPEC CPU2000, in

order to ensure all analyses produce sound results given complex input programs. As part

of PTAGPU, testing with PTABENCH was enabled, to apply the unit tests and ensure

that the results produced are sound and complete. This was achieved by overwriting parts

of the test invocation implementation inside SVF as alluded to in subsection 2.3.7.

The constraints in the test programs are implemented as function calls that relay the

meaning of each property that is to be checked by the test case. The functions do not have

to be defined for the constraint to be checked. When one of these special function calls

is encountered at the end of the analysis, an alias check is performed for both function

parameters. This check directly reads the points-to relations from unified memory and

reports whether both variables may alias or are in fact not aliased. Note that the lack

of precision of our whole program context- and flow-insensitive analysis prevents us from

making any definitive statements about whether or not two variables have to alias, only

that they may alias. For this reason any must alias constraints are interpreted as may alias

constraints in our pointer analysis, similar to other pointer analyses in SVF. As an example,

see the following test program in Listing 10 that checks whether a pointer analysis in SVF

correctly resolves load and store constraints.

When executing the PTABENCH test suite while using PTAGPU as the pointer analysis

6https://github.com/SVF-tools/Test-Suite

57

https://github.com/SVF-tools/Test-Suite

2.4. Experimental Results Lukas Böttcher

for i in Test-Suite/test_cases_bc/basic_c**/*;
do build/ptagpu/runptagpu -stat=0 $i ;
if [$? -ne 0]; then

break
fi

done

Listing 11: Sample bash script for applying all unit tests on PTAGPU.

backend, all 107 unit tests applicable to pointer analyses successfully produce the expected

results regarding pointer and indirect call-site information. The results can be replicated

within the source code either by applying the test suite manually with a simple bash

script like the one in Listing 11 or by using the CTest library of CMake and building the

test target. From this it follows that PTAGPU produces sound, field-sensitive pointer

analysis results and does not reduce the accuracy of other pointer analyses in SVF in any

way. Interestingly, the current state-of-the-art pointer analysis implementation of SVF, the

Andersen based wave propagation algorithm with diffpoints, wavediff in short, successfully

analyzes only 106 of the 107 unit tests. One test case concerning nested structs failed

during testing of the wavediff algorithm. This discrepancy was not further investigated.

2.4.2 Benchmark Suite

To assess the performance of PTAGPU and establish a set of metrics that can be compared

to other pointer analysis implementations, a suite of open source projects was compiled

and used as input for pointer analyses. The collection of open source projects was selected

to present a diverse set of code bases in terms of code style and size of the programs. The

collection consists of 16 programs, each varying in complexity. See Table 2.2 for an overview

of all the selected benchmark programs. As PTAGPU and SVF rely on the LLVM project

for data generation and input in the form of compiled bitcode, the selection of benchmark

programs is somewhat limited to those written in languages for which LLVM compiler

frontends exist. This includes programming languages such as C, C++, Rust, FORTRAN,

and many other systems programming languages.

The evaluation was performed on PTAGPU, the proposed algorithm of this thesis, and both

the Andersen based wave propagation algorithm, wavediff, and the naive implementation

of the Andersen analysis in SVF. The Andersen wave propagation algorithm represents

a highly optimized current state-of-the-art inclusion-based, field-sensitive, context- and

flow-insensitive whole program pointer analysis. Furthermore, the results will showcase the

differences between sequential CPU implementations and parallel GPU implementations.

58

2.4. Experimental Results Lukas Böttcher

program #V #E bc size density avg. degree version
bash 238 77 5.4M 7.514× 10−5 0.327 5.1.16
bison 146 59 3.4M 1.417× 10−5 0.407 3.8
diff 54 17 1.3M 5.794× 10−6 0.317 3.8
git 869 379 25M 3.399× 10−3 0.437 2.37.4

htop 48 20 1.6M 8.447× 10−6 0.413 3.2.1
httpd 169 95 1.4M 3.180× 10−5 0.561 2.4.54
nano 6 2 298K 5.887× 10−5 0.399 6.4
perl 445 206 4.9M 1.617× 10−4 0.464 5.37.3
php 1582 611 52M 1.689× 10−4 0.386 7.4.31

postgres 1432 721 18M 2.642× 10−4 0.504 14.4
python 742 313 21M 3.453× 10−4 0.422 3.10.6
redis 207 67 4.8M 6.507× 10−4 0.327 7.0.5
vim 696 280 7.7M 7.676× 10−5 0.403 9.0
linux 4464 2206 72M 5.629× 10−4 0.494 5.14

linux-minimal 393 157 5.4M 7.872× 10−3 0.401 5.14
zstd 280 101 2.3M 6.260× 10−5 0.362 1.5.2

Table 2.2: List of benchmark programs used to evaluate PTAGPU.
Number of nodes and edges in thousands, bitcode file size in kilobytes, density and average
out degree for each constraint graph.

Methodology

To generate the bitcode for the pointer analyses, each of the 16 benchmark projects was

compiled with the clang7 compiler. During compilation of each object file that was compiled

and assembled, equivalent bitcode was generated which was then linked along with the

object code to produce both a binary - or a set of binaries, depending on the project - and a

bitcode file for the entire program. Instead of manually intercepting each compile operation

for each source file, the wllvm8 utility was used which is specifically designed to extract

whole program bitcode from source packages by injecting bitcode generating compiler flags

during the build process. Since most of the selected benchmark programs use common

open source toolchains, such as Makefiles and bootstrapping scripts, the custom wllvm

compiler interface was specified through either standard environment variables CC and

CXX or arguments to the configure-scripts. Each of the resulting bitcode files are provided

together with the source code of PTAGPU. Furthermore, if a given project provided a test

suite, that test suite was used to verify the functions of the compiled program to ensure

that the compilation successfully produced a working binary-bitcode-pair.

After the bitcode was generated, it was used as input for all three pointer analysis algorithms

via a driver program that loads the bitcode into memory, initializes SVF and executes the
7https://clang.llvm.org
8https://github.com/travitch/whole-program-llvm

59

https://clang.llvm.org
https://github.com/travitch/whole-program-llvm

2.4. Experimental Results Lukas Böttcher

correct pointer analysis. All analyses that were evaluated were compiled with GCC and

the optimization flag -O2. Each analysis was performed 5 times to ensure the results are

consistent and reliable and not falsified by external factors. This was necessary, since two

of the hardware setups were part of a shared server. The individual time measurements

were performed by using the C++ chrono9 library.

Hardware Setup

Three separate machines were used to evaluate the pointer analyses. Machine A was

equipped with a 12 core AMD Ryzen 5900x CPU, 32 GiB of memory and an NVIDIA

RTX 3080Ti, machine B was equipped with two sockets of 16 core Intel Xeon Gold 6242

processors capable of simultaneous multithreading, 1.5 TiB of memory and 8 NVIDIA

RTX 2080 GPUs and machine C was a cloud instance equipped with 256 vCPUs and an

A100 GPU with 80 GiB of HBM2 memory. Because some of the larger programs in the

benchmark suite exceeded the 32 GiB of system memory on machine A during analysis, the

reported results were mostly gathered on machine B and C, except for Figure 2.12 where

the effects of the different hardware specifications were evaluated. To test how much the

larger benchmark programs benefit from more graphics memory, the set of benchmarks were

executed on the A100 GPU of machine C as well, which is equipped with more graphics

memory than available on the RTX 3080Ti and RTX 2080.

Results

Initially the PTAGPU analysis and both Andersen based pointer analyses, wavediff and

naive-ander, were executed on machine B. The results of which can be found in Table 2.3

where the runtimes of all three analyses are reported in elapsed seconds from beginning to

end of each analysis. The results from machine B showed that the PTAGPU analysis had a

high speedup (greater than 2) for several programs, including "perl", "python", "postgres",

and "vim", indicating that it was significantly faster than the wavediff analysis for these

programs. However, the PTAGPU analysis had a low speedup (less than 0.5) for several

programs, including "diff", "git", "nano" and "php", indicating that it was noticeably

slower than the wavediff analysis for these programs. Most of the programs with sub-one

speedup factors, are smaller in terms of node and edge count of the constraint graph,

such as "diff", "htop", "nano" and "zstd". These slow results for the smaller programs

can be explained by the overhead associated with CUDA initialization. For example the

PTAGPU analysis for the "nano" program took 1687 ms, where 1533 ms were spent on
9https://en.cppreference.com/w/cpp/chrono

60

https://en.cppreference.com/w/cpp/chrono

2.4. Experimental Results Lukas Böttcher

program t-wavediff t-ptagpu speedup t-naive-ander GPU memory
bash 16.222 15.489 1.05 102 195.752 1024MiB
bison 18.977 9.837 1.93 119 999.054 260MiB
diff 1.469 4.231 0.35 1561.577 71MiB
git 557.953 4690.010 0.12 33 404 492.853 21 467MiB

htop 2.912 5.275 0.55 5696.107 93MiB
httpd 5.321 6.414 0.83 2889.208 160MiB
nano 0.087 1.751 0.05 98.5 7MiB
perl 103.338 45.093 2.29 2 688 610.846 3999MiB
php 645.697 64 965.400 0.01 6 530 636.248 27 561MiB

postgres 997.355 465.527 2.14 6 481 597.401 16 430MiB
python 536.515 203.649 2.63 1 731 373.999 9016MiB

redis-server 8.679 11.592 0.75 4834.759 207MiB
vim 1052.995 268.628 3.92 -𝑏 11 966MiB

vmlinux 32 100.566 -𝑎 -𝑎 -𝑎 -𝑎

vmlinux-tiny 91.479 188.315 0.49 1 410 004.628 2175MiB
zstd 11.063 13.172 0.84 7958.999 454MiB

Table 2.3: Benchmark results comparing PTAGPU, Andersen wavediff and naive Andersen
analysis measured in seconds. Executed on machine B using an RTX 2080 GPU.
The 𝑎 denotes that the analysis did not finish in under 24 hours.
The 𝑏 denotes that the analysis failed to compute a solution.

CUDA memory allocations and deallocations and 145 ms on the actual compute kernels.

Comparing this to the 87 ms required for the wavediff analysis, the PTAGPU analysis

runtime is dominated by overhead from the CUDA memory management. This explains

the relatively slow performance of PTAGPU on the smaller benchmarks.

Notably the results for the benchmarks "git" and "php" achieved an especially low speedup

of 0.12 and 0.01 respectively on machine B, although both programs are relatively large and

the analysis was not dominated by CUDA memory management, but the primary kernel

instead, as can be seen in Figure 2.7, indicating a large workload on the GPU. Looking at

the third graph in Figure 2.8, it is clear that exceeding the 12 GiB of graphics memory

available per GPU on machine B had a disproportionately negative effect on performance.

This can be attributed to the fact that allocating more unified memory than available

graphics memory leads to an excess of page faults, as soon as the graphics memory is

exhausted during migration from the CPU to the GPU. While this could be mitigated by

prefetching only the required memory regions into the GPU memory on-demand during

analysis, this would require partitioning the sparse bit vectors into chunks that entirely

fit into graphics memory, which is not trivially done for larger analyses, especially not

dynamically. To verify that the performance impact was caused by page faults in the CUDA

driver, the strace tool was used to inspect the system calls during the PTAGPU analysis of

61

2.4. Experimental Results Lukas Böttcher

Figure 2.7: Stacked bar graph for PTAGPU runtime on git, postgres and php benchmarks
in a memory constrained environment on machine B using an RTX 2080 GPU. Runtime is
dominated by the main and the store kernel.

the php program, which showed ioctl system calls to and from the CUDA unified memory

address space, verifying the suspected problem.

To further evaluate the performance of the PTAGPU algorithm without being memory

constrained, machine C was used to analyze the benchmark programs with PTAGPU again.

Using the NVIDIA A100 GPU on machine C, all analyses except "vmlinux" fit into the 80

GiB of graphics memory. The results of the second benchmarks can be found in Table 2.4.

The benchmarks on the A100 GPU overall improved the performance of PTAGPU compared

to machine B, increasing the speedup factor for all programs. See Figure 2.9 for an overview

of the speedup factors PTAGPU achieved over the wavediff algorithm. Specifically the "git",

"php", "postgres" and "python" benchmarks improved the most, since the analysis was no

longer limited by GPU memory. Depending on the benchmark program, PTAGPU was up

to four times faster than the wavediff algorithm. Compared to the naive implementation of

Andersen’s algorithm in SVF, PTAGPU was several orders of magnitude faster on every

one of the benchmarks. At its slowest PTAGPU was about 50% as fast as the wavediff

algorithm, ignoring minimal analyses, such as "nano".

Looking at the distribution of time spent on the individual components of PTAGPU in

Figure 2.10, it is evident that the bulk of the time is spent in the main kernel and the

asynchronous resolution of gep constraints and indirect call-sites. With an increase in size

of the constraint graph, the relative time spent in the asynchronous CPU portion increases,

since the number of gep constraints tends to increase with the number of pointer variables

in larger programs.

62

2.4. Experimental Results Lukas Böttcher

Figure 2.8: Detailed statistics from pointer analyses on machine B using an RTX 2080
GPU.

63

2.4. Experimental Results Lukas Böttcher

program t-wavediff t-ptagpu-a100 speedup GPU memory
bash 16.222 13.126 1.23 1024.0MiB
bison 18.977 7.599 2.49 260MiB
diff 1.469 3.305 0.44 71MiB
git 557.953 869.302 0.64 21 467MiB

htop 2.912 4.039 0.72 93MiB
httpd 5.321 4.720 1.12 160MiB
nano 0.087 1.626 0.05 7MiB
perl 103.338 41.854 2.46 3999MiB
php 645.697 500.086 1.29 27 561MiB

postgres 997.355 290.219 3.43 16 430MiB
python 536.515 172.701 3.10 9016MiB

redis-server 8.679 8.830 0.98 207MiB
vim 1052.995 247.859 4.24 11 966MiB

vmlinux 32 100.566 -𝑎 -𝑎 -𝑎

vmlinux-tiny 91.479 136.164 0.67 2175MiB
zstd 11.063 9.795 1.12 454MiB

Table 2.4: Benchmark results comparing PTAGPU and Andersen wavediff measured in
seconds. Executed on machine C using an A100 GPU.
The 𝑎 denotes that the analysis ran out of memory.

Figure 2.9: PTAGPU speedup for each benchmark program over wavediff algorithm on
machine C with an A100 GPU.

64

2.4. Experimental Results Lukas Böttcher

Figure 2.10: Time spent on individual PTAGPU components on machine C.

Looking at the statistics for the benchmarks on machine C in Figure 2.11, neither program

size nor size of the constraint graph can be used to accurately estimate the performance

of either pointer analysis. For example the "postgres" benchmark program consists of

both more nodes and more edges in the constraint graph, but performs considerably

better during analysis than benchmarks with smaller constraint graphs, such as "git". For

PTAGPU, unified memory usage during analysis is a good indicator for runtime performance.

Interestingly the performance on the wavediff algorithm was worse in "postgres" than in

"git" indicating that the CPU algorithms are more influenced by the overall size of the

constraint graph. One hypothesis for these results is that the internal code structure of

the benchmark programs greatly influences the parallel performance on the GPU. While

relatively flat programs can benefit from parallel application of the Andersen constraints,

programs that contain long nested chains of instructions do not benefit from concurrent

rule application as much, since each instruction depends on the previous application of

the constraint rules. See Listing 12 for an intuitive example for flat and nested program

structures. Note that this example is not realistic and would likely be optimized by a

compiler. In real programs, nested structs or classes in C++ tend to result in a nested

program structure. This theory can explain the discrepancy between the benchmark results

of "postgres" and "git". The C-specific struct keyword was used 13124 times in the source

65

2.4. Experimental Results Lukas Böttcher

Figure 2.11: Detailed statistics from pointer analyses on machine C.
Memory constraints removed by using an A100 GPU.

66

2.4. Experimental Results Lukas Böttcher

// flat program structure
int value1 = 14;
int value2 = value1 * 2;
method(value1, value2);
// nested program structure
struct param { int f1; int f2;} p;
p.f1 = 14; p.f2 = p.f1 * 2;
method(p);

Listing 12: Intuitive illustration of a "flat" and a "nested" program structure.

Figure 2.12: Comparison of the CPU and GPU runtime on the different hardware configu-
rations.
Here the benchmark program python was used to compare the different machines.

code of the "postgres" program, while being used 27459 times in the git source code. Hence,

the apparent nested structure in the git source code could lead to a decreased speedup

compared to the much larger but flatter code structure in the "postgres" source code.

Comparing the three different hardware configurations in Figure 2.12, the influence of CPU

frequency can be seen on the wavediff pointer analysis. Similarly, PTAGPU also seems

to benefit from higher boost frequencies of the GPU, since Machine A with an RTX 3080

Ti clocked at 1665 MHz outperformed the A100 clocked at 1410 MHz. Total graphics

memory does not affect the analysis performance of PTAGPU, as long as enough memory

is available.

Lastly, an experimental multi-GPU implementation of PTAGPU was briefly tested against

67

2.4. Experimental Results Lukas Böttcher

some of the benchmarks. Since PTAGPU synchronizes across each of the thread blocks via

atomic incrementation of a worklist variable, the scope of the atomic incrementation can be

extended from a single device to system-wide atomic access as long as the devices support

the CUDA compute capability 6.0 or above. In theory this allows for simple multi-GPU

execution of the PTAGPU analysis. In practice, when executing PTAGPU with multiple

RTX 2080 GPUs on machine B, the performance decreased substantially. This can be

explained by the fact that atomic access to a variable across multiple devices on a system

requires more expensive synchronization than on a single device. Furthermore, cross-device

memory access is relatively slow. Here using faster GPU interconnects, like NVLink bridges

between the GPUs could improve the performance. Improving the performance of PTAGPU

regarding the multi-GPU synchronization overhead would require partitioning the constraint

graph into partitions that could individually be processed on each of the GPUs, which is

beyond the scope of the current PTAGPU implementation.

68

Lukas Böttcher

Chapter 3

Discussion

3.1 Evaluation of Results

To summarize the research conducted up to this point, a GPU-supported parallel Andersen

based pointer analysis, PTAGPU, was implemented on top of LLVM and the SVF framework

using the NVIDIA CUDA SDK. PTAGPU was both tested for correctness and performance

in comparison to established CPU-based pointer analyses in multiple benchmarks and

hardware combinations. The primary research question was to what extent such an

implementation presents advantages or disadvantages over other analyses that are not

strictly parallel in nature.

The experimental results presented in section 2.4.2 indicate that PTAGPU is a viable

implementation to improve the performance of a whole program field-sensitive pointer

analysis without sacrificing precision of the analysis. PTAGPU achieved an average speedup

of 1.60 across 15 benchmarks over the SVF wavediff algorithm. Since the individual

benchmarks with lower speedups are almost entirely smaller programs, the absolute time

saved by using PTAGPU was 28 minutes and 59 seconds over the total 1 hour 07 minutes

and 30 seconds required by wavediff to analyze the 15 benchmark programs. In terms of

absolute time, the speedup factor was 1.75. This represents a meaningful improvement

over the CPU algorithm. Unfortunately this does not include the Linux benchmark, as the

analysis did not fit into graphics memory and did not finish within a reasonable amount

of time, which was decided to be 24 hours. Although enough total unified memory was

available, the analysis of the Linux source code did become impeded by excessive page

faults as illustrated in section 2.4.2. Judging from the wavediff analysis of the Linux kernel,

roughly 300 GiB of memory are required for a successful whole program field-sensitive

pointer analysis, which is currently impossible to compute entirely in the graphics memory

69

3.1. Evaluation of Results Lukas Böttcher

of a single graphics card.

One key insight from the experimental results was, that there are no precise trivial prior

indicators for analysis runtime, since the program structure is seemingly more influential on

analysis runtime than lines of code, nodes in the constraint graph or size of the compiled

program. This is supported by prior research from [MBP12] or [SYXL15], where the selected

benchmark programs - some of which overlap with the selected benchmark programs of this

thesis - also had vastly different speedups for the GPU-based analysis over the CPU-based

analyses. It was found that the use of nested programming techniques, such as structures

in a C program, can lead to a lower speedup on parallel hardware. As a result, programs

like git and the Linux kernel, that make extensive use of C structs, are performing worse in

PTAGPU compared to other benchmark programs. Because PTAGPU is field-sensitive, the

effect of structures with fields in the source code disproportionately influences the runtime

of the analysis compared to other instructions that can more easily be parallelized. Still,

the majority of benchmark programs did profit from the parallel analysis in PTAGPU and

performed better on the GPU than on the CPU.

Although the results indicate that PTAGPU generally outperforms the CPU counterparts

in larger benchmarks, it should be acknowledged that it is difficult to establish a fair

comparison between CPU and GPU pointer analysis implementations. Both in terms of

upfront cost and power consumption both implementations are vastly different. While the

SVF wavediff algorithm can be executed on almost any modern computer with sufficient

system memory, PTAGPU requires specialized hardware. Especially for larger analyses, a

GPU with enough graphics memory is required for an efficient analysis with PTAGPU.

Comparing PTAGPU Results to other GPU-based implementations.

Some other GPU-based Andersen style pointer analyses are [MBP12] and [SYXL15].

Unfortunately the results from both these GPU-based pointer analysis algorithms are not

directly comparable with PTAGPU in terms of total runtime, since the reported constraint

graph sizes are vastly smaller than those produced by SVF, indicating that they might be

incomplete in some way. Intuitively the reported result for performing a whole program field-

sensitive inclusion-based pointer analysis on the Linux kernel in under ten seconds [SYXL15]

does seem too fast, given the results from SVF. Although the input data generation for these

analyses was based on LLVM, according to a previous paper by Mendez et al. [MMP10],

the source code for the data generation is not available. Furthermore, indirect call-sites

were not resolved during either of these analyses making them fundamentally incompatible

with the results of PTAGPU. Because the source code of neither of these implementations

70

3.2. Future Work Lukas Böttcher

is available online and no other GPU-based implementations of Andersen style pointer

analyses are known at this time, direct comparisons with other GPU implementations are

omitted from the evaluation.

3.2 Future Work

During the development of PTAGPU and evaluation of the results, multiple novel approaches

and ideas were discovered but not implemented, which will be summarized in the following

section. Some of these approaches could be used to further improve the performance

of PTAGPU and alleviate shortcomings and limitations discovered during development.

Furthermore, some ideas could lead to improvements in the SVF project upstream, and

inspire new research directions.

Improvements for PTAGPU

The hypothesized approach of using unified memory in a CUDA program to extend the

scalability of PTAGPU and get around the limitation of only using the device’s graphics

memory did not work during experimental testing. It was still necessary that the GPU

had enough graphics memory to hold the entire analysis, because the performance of

the algorithm would drastically decrease if graphics memory were to be exhausted while

the analysis was still running. The reason for this was that accessing sparse bit vector

elements outside of graphics memory would result in page faults and require moving the

requested memory region into graphics memory, replacing a previous section of memory and

slowing down the analysis. The CUDA API does provide functions to prevent this behavior.

By using cudaMemAdvise and cudaMemPrefetchAsync the developer can give hints to the

memory controller as to where specific memory regions are preferred to be stored and loaded

into before the data is actually required by the algorithm. Fundamentally the problem

with prefetching memory is the irregularity of a pointer analysis, making it very difficult to

predict which memory regions are required in each iteration of the algorithm.

One possible solution to this problem would be a partitioning strategy, where the entire

constraint graph is divided into roughly equally sized partitions. The algorithm would then

load each partition into device memory and resolve all constraints 𝑥 → 𝑦 → 𝑧 ⇝ 𝑥 → 𝑧

where all nodes, x, y and z are included in the currently loaded partition. To solve

constraints that require loading nodes outside the current partition, two partitions are

always loaded into memory in pairs. Constraints that involve nodes of both partitions are

then solved. This is repeated until all constraints are resolved. This exact approach was

71

3.2. Future Work Lukas Böttcher

used by Graspan in [ZWH+21] using the file system instead of unified memory. The idea

remains the same.

Developing a partitioning system instead of loading the entire constraint graph into graphics

memory, would also enable the use of multiple GPUs without having to synchronize access

to individual nodes across all devices. The downside with partitioning the constraint

graph lies in the fact that with an increasing number of partitions, the overhead associated

with loading and unloading partitions increases. Splitting the constraint graph into 16

partitions would require loading and unloading all 15 adjacent partitions in order to resolve

all constraints of a single partition in the worst case. Part of this problem can be reduced

by performing an offline analysis and associating nodes with partitions such that a minimal

number of edges overlap between partitions, leading to an optimal distribution of nodes for

parallel graph rewriting.

Other than partitioning the constraint graph, there are various optimizations proposed

in [MBP12] that did not yield any immediate performance improvements during the

development of PTAGPU but might bring improvements given more thorough testing.

These optimizations include online cycle detection and pointer-equivalent variable detection

on the GPU during analysis. Variables are pointer-equivalent if they possess the same

outgoing points-to edges. These might be interesting to find, since applying a copy rewrite

rule associated with any of the pointer-equivalent variables, results in the same operation

on the GPU and would be redundant. Similarly, a cycle of copy edges in the constraint

graph would always hold the same points-to edges for each node in the cycle and thus

should be detected during analysis to prevent redundant work.

Another approach for improving the scalability of PTAGPU would be the use of peer-

to-peer memory access. Peer-to-peer memory access is a capability of certain NVIDIA

GPUs whereby multiple graphics cards can pool their memory though special NVLink

interconnects on the GPUs, bypassing the bandwidth restrictions of the PCIe connections.

This would allow one kernel on a single device to access the graphics memory of several

graphics cards and increase the available amount of memory during analysis and improving

the scalability.

Finally, PTAGPU would greatly benefit from dynamic memory allocation. Currently, the

total amount of unified memory has to be set during compilation, which is then allocated

during runtime. Since pointer analyses are very irregular calculations, it is very difficult to

set the correct amount of memory before the analysis is run. For this reason a dynamic

memory allocation algorithm could improve the usability of PTAGPU by predicting and

reallocating the amount of memory needed for the analysis.

72

3.3. Conclusion Lukas Böttcher

Improvements for SVF

As PTAGPU and prior work has shown, there are lots of possibilities for parallelizing a

pointer analysis. Since GPUs are not the only devices capable of parallel execution, it

would be another interesting avenue of research to apply some of the techniques discussed

in this thesis on the CPU-based pointer analyses of SVF. Seeing how other papers, like

[MBP12], compared GPU and CPU parallel pointer analysis implementations, it would be

interesting to compare a parallelized SVF-based pointer analysis on the CPU to PTAGPU.

Especially for smaller programs, this might bring performance improvements. Part of a

parallel CPU implementation in SVF would be to create thread safe versions of the internal

SVF data structures. This would also indirectly improve the performance of PTAGPU,

since the asynchronous CPU section of PTAGPU also utilizes parts of SVF that currently

can not be parallelized. Especially improving the parallel resolution of getelementpointer

constraints could yield great improvements for PTAGPU, since dealing with nested code

structures is currently one of its weaknesses. It would also be interesting to further analyze

the effects of using specific language constructs on the runtime performance on parallel

pointer analyses.

Ultimately it would be a good idea to implement a hybrid pointer analysis in SVF that

would be capable of utilizing both CPUs and GPUs for the analysis depending on the

program to be analyzed. Using the CPU implementation for smaller programs and the GPU

implementation for larger programs until graphics memory is exhausted, could maximize

the performance for different kinds of input programs. Since pointer analyses do not remove

any already computed points-to data, a given analysis could switch between CPU and GPU

implementations relatively uninterruptedly, without having to repeat a large amount of

work. Using diffpoints further improves this process.

Finally, another avenue for future research is the reevaluation of context-free-grammars,

possibly in a parallel execution environment, for the purpose of pointer analysis. Recent

additions to the SVF framework include a solver component that explicitly utilizes context-

free-grammars [LSDZ22] and is allegedly more performant than Graspan at querying

CFL-reachability in a graph, according to the cited paper.

3.3 Conclusion

Concluding, PTAGPU was capable of meaningfully improving the performance of a whole

program field-sensitive pointer analysis on top of LLVM and the SVF framework. The

main advantages lie with relatively large programs that are built using a relatively flat code

73

3.3. Conclusion Lukas Böttcher

structure, where PTAGPU achieves a respectable speedup over CPU-based pointer analyses.

Given how general Andersen style pointer analyses are a P-complete computational problem

[MP21], this result is not achieved by trivial methods, but requires a wide set of complex

analysis techniques and optimizations. All while being able to use a reproducible and

well-defined input format in the form of LLVM bitcode.

The main disadvantages are that using GPUs for a pointer analysis always introduces an

overhead for graphics memory management and conversion of input data into a format

suitable for the GPU. This makes using GPUs for analyzing small programs (less than 1

MB in size) inefficient. For optimal performance PTAGPU also requires that the entire

analysis fits into graphics memory, which currently prevents some of the largest software

projects, such as the Linux kernel, from being analyzed by PTAGPU efficiently.

Overall the parallel GPU-based pointer analysis PTAGPU has shown to be a promising

approach for improving the efficiency of pointer analysis. By leveraging the parallel

processing capabilities of GPUs, PTAGPU was able to achieve an average speedup of 1.60

over the state-of-the-art wavediff pointer analysis in the SVF framework. This demonstrates

the potential of PTAGPU to significantly reduce the time required for pointer analysis,

making it a valuable tool for developers and researchers working in this field. This

implementation should provide a good reference for future research into parallel pointer

analyses and can easily be expanded upon based on the modular design of the SVF

framework.

74

Lukas Böttcher

Appendix A

Raw Data

id file GPU memory MiB filesize MB wavediff-t naiveander-t # nodes # edges version

1 bash 1024 5.400 16222.113 102195.752 238 77 5.1.16
2 bison 260 3.400 18977.376 119999.054 146 59 3.8
3 diff 71 1.300 1469.056 1561.577 54 17 3.8
4 git 21467 25.000 557953.924 33404492.853 869 379 2.37.4
5 htop 93 1.600 2912.693 5696.107 48 20 3.2.1
6 httpd 160 1.400 5321.631 2889.208 169 95 2.4.54
7 nano 7 0.298 87.438 98.500 6 2 6.4
8 perl 3999 4.900 103338.824 2688610.846 445 206 5.37.3
9 php 27561 52.000 645697.175 6530636.248 1582 611 7.4.31

10 postgres 16430 18.000 997355.718 6481597.401 1432 721 14.4
11 python 9016 21.000 536515.479 1731373.999 742 313 3.10.6
12 redis-server 207 4.800 8679.144 4834.759 207 67 7.0.5
13 vim 11966 7.700 1052995.525 NaN 696 280 9.0
14 vmlinux NaN 72.000 32100566.652 NaN 4464 2206 5.14
15 vmlinux-tiny 2175 5.400 91479.697 1410004.628 393 157 5.14
16 zstd 454 2.300 11063.214 7958.999 280 101 1.5.2

Table A.1: Raw Data of Baseline results for wavediff and naive-ander Pointer Analyses
Node and Edge count in thousands, times in milliseconds.

id ptagpu-t svf init cuda init update-k main-k thrust sort store-k async CPU S

1 15489.00 366.515 2489.389 1129.063 1324.698 743.670 858.932 5190.693 1.05
2 9837.06 214.357 1650.840 830.177 234.046 675.748 54.633 4317.114 1.93
3 4231.58 66.945 2065.479 103.057 33.120 379.843 23.591 953.283 0.35
4 4690010.00 2190.250 17095.315 70148.000 3968158.215 11743.372 68373.295 538454.710 0.12
5 5275.51 68.425 2053.573 229.714 202.955 433.321 41.092 1587.968 0.55
6 6414.69 309.354 1481.509 303.996 42.605 511.057 8.219 1637.408 0.83
7 1751.01 7.732 1533.113 1.829 3.040 45.140 1.057 94.275 0.05
8 45093.40 775.915 2939.635 3457.350 6125.819 767.334 2751.206 21457.059 2.29
9 64965400.00 2809.670 20928.407 193679.543 53783100.092 12298.489 10732741.786 187398.213 0.01

10 465527.00 2911.590 8824.470 65379.251 192989.575 1374.555 32019.477 135372.093 2.14
11 203649.00 1344.910 4088.639 14380.164 63762.440 16295.704 12199.745 79598.063 2.63
12 11592.50 357.262 2785.032 688.684 95.318 1158.755 42.613 3688.319 0.75
13 268628.00 1166.830 9292.169 10709.775 113872.762 947.744 20876.445 100689.414 3.92
14 NaN NaN NaN NaN NaN NaN NaN NaN NaN
15 188315.00 654.966 2405.784 10600.173 25890.805 12319.814 7893.207 121492.773 0.49
16 13172.60 388.764 2791.627 680.571 90.320 687.799 80.554 4526.521 0.84

Table A.2: Raw Data of PTAGPU on Machine B, times in milliseconds.

75

Lukas Böttcher

id ptagpu-t svf init cuda init update-k main-k thrust sort store-k async CPU S

1 13126.316 316.589 3339.273 955.132 1258.228 103.923 824.671 3404.405 1.23
2 7599.453 181.425 3397.507 657.559 203.553 92.256 41.323 2941.927 2.49
3 3304.592 53.196 3119.867 100.198 29.448 73.122 13.813 379.511 0.44
4 869302.000 1489.250 2852.620 31480.079 350891.929 4856.937 30923.576 431554.218 0.64
5 4038.684 58.770 3238.629 212.349 189.568 74.528 20.536 852.136 0.72
6 4720.701 233.173 3125.778 258.309 39.757 57.139 5.049 848.704 1.12
7 1626.456 5.655 3163.307 2.024 4.073 8.778 0.786 18.179 0.05
8 41853.936 644.417 3277.899 3452.222 6873.348 164.523 2906.182 18027.103 2.46
9 500086.000 2561.200 3815.678 32016.810 184075.139 2797.468 49062.434 198397.500 1.29

10 290219.000 2465.070 4439.149 12040.787 140270.103 211.504 14064.883 89735.395 3.43
11 172701.000 1088.500 3468.036 14790.821 65522.991 203.848 11336.972 63986.167 3.10
12 8830.066 247.339 3339.556 615.407 103.871 109.152 24.580 2143.869 0.98
13 247859.000 963.959 3336.741 7599.231 125708.265 123.820 23102.001 75995.761 4.24
14 NaN NaN NaN NaN NaN NaN NaN NaN NaN
15 136164.602 554.447 3152.182 11286.157 26563.670 236.409 8721.936 79417.327 0.67
16 9795.036 312.077 3104.891 546.614 70.509 75.957 61.621 2587.828 1.12

Table A.3: Raw Data of PTAGPU on Machine C, times in milliseconds.

Figure A.1: Adjacency Plot for the Constraint Graph of the Git Client

76

Lukas Böttcher

Figure A.2: Adjacency Plot for the Constraint Graph of Postgres

77

Lukas Böttcher

List of Figures

1.1 Illustration of the LLVM toolchain from Lattner et al. 14

1.2 Overview of the SVF library . 27

1.3 An example PAG as produced by SVF . 28

1.4 The class hierarchy of pointer analysis implementations in SVF. 29

1.5 Graspan GPU Data Structure for the Constraint Graph 31

1.6 Adjacency Plot for the Constraint Graph of the Linux Kernel 31

2.1 Diagram of a single A100 SM . 37

2.2 Diagram of the CUDA memory architecture for an A100 39

2.3 CUDA stream illustration . 40

2.4 Diagram for Edge Insertion . 45

2.5 An example procedure for inserting a single edge into a sparse bit vector. . . 46

2.6 Diagram for Concurrent Graph Rewriting 47

2.7 Stacked bar graph for PTAGPU runtime on git, postgres and php benchmarks. 62

2.8 Detailed statistics from machine B . 63

2.9 Bar plot for speedup on machine C. 64

2.10 Time spent on individual PTAGPU components on machine C. 65

2.11 Detailed statistics from machine C. 66

2.12 Comparison of the different hardware configurations. 67

A.1 Adjacency Plot for the Constraint Graph of the Git Client 76

A.2 Adjacency Plot for the Constraint Graph of Postgres 77

79

Lukas Böttcher

List of Tables

1.1 Constraints of an inclusion-based pointer analysis. 10

1.2 Constraints of an equality-based pointer analysis. 11

1.3 Example for Applying Andersen Constraints 20

1.4 Overview of CFG Terminals for Andersen Constraints 22

1.5 Overview of CFG Productions for Andersen Constraints 23

2.1 List of Graph Rewriting Rules in use by PTAGPU 47

2.2 List of benchmark programs used to evaluate PTAGPU 59

2.3 Benchmark results comparing PTAGPU with CPU analyses on machine B . 61

2.4 Benchmark results comparing PTAGPU with CPU analyses on machine C . 64

A.1 Raw Data of Baseline results for wavediff and naive-ander Pointer Analyses 75

A.2 Raw Data of PTAGPU on Machine B, times in milliseconds. 75

A.3 Raw Data of PTAGPU on Machine C, times in milliseconds. 76

81

Lukas Böttcher

List of Algorithms

1 General Wave Propagation Algorithm . 13

2 Main Algorithm of PTAGPU . 48

3 Update Points Kernel . 49

4 Copy Load Storecollect Kernel . 50

5 applyRewriteRule Procedure Pseudocode . 50

6 collectBitvectorTargets Procedure Pseudocode 51

7 mergeBitvectors Procedure Pseudocode . 52

8 Store Kernel Pseudocode . 52

9 CPU Async Procedure Pseudocode . 55

83

Lukas Böttcher

Bibliography

[AG18] R. Azimov and S. Grigorev. “Context-free path querying by matrix multiplica-

tion”. In: Proceedings of the 1st ACM SIGMOD Joint International Workshop

on Graph Data Management Experiences & Systems (GRADES) and Network

Data Analytics (NDA). 2018, pp. 1–10 (cit. on pp. 22, 23).

[And94] L. O. Andersen. “Program analysis and specialization for the C programming

language”. PhD thesis. Citeseer, 1994 (cit. on pp. 3, 9).

[GZJ+20] R. Gu, Z. Zuo, X. Jiang, H. Yin, Z. Wang, L. Wang, X. Li, and Y. Huang.

“Towards efficient large-scale interprocedural program static analysis on dis-

tributed data-parallel computation”. In: IEEE Transactions on Parallel and

Distributed Systems 32.4 (2020), pp. 867–883 (cit. on pp. 2, 30).

[Hin01] M. Hind. “Pointer analysis: Haven’t we solved this problem yet?” In: Proceed-

ings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering. 2001, pp. 54–61 (cit. on pp. 4, 8).

[KMZN16] S. Kulkarni, R. Mangal, X. Zhang, and M. Naik. “Accelerating program

analyses by cross-program training”. In: ACM SIGPLAN Notices 51.10 (2016),

pp. 359–377 (cit. on p. 6).

[Lan92] W. Landi. “Undecidability of static analysis”. In: ACM Letters on Programming

Languages and Systems (LOPLAS) 1.4 (1992), pp. 323–337 (cit. on pp. 2, 3).

[Lin15] S.-H. Lin. Alias analysis in LLVM. Lehigh University, 2015 (cit. on p. 7).

[LSDZ22] Y. Lei, Y. Sui, S. Ding, and Q. Zhang. “Taming transitive redundancy for

context-free language reachability”. In: Proceedings of the ACM on Program-

ming Languages 6.OOPSLA2 (2022), pp. 1556–1582 (cit. on pp. 26, 73).

[LSS+15] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-Y. E.

Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis. “In defense

of soundiness: A manifesto”. In: Communications of the ACM 58.2 (2015),

pp. 44–46 (cit. on p. 3).

85

BIBLIOGRAPHY Lukas Böttcher

[MBP12] M. Mendez-Lojo, M. Burtscher, and K. Pingali. “A GPU implementation of

inclusion-based points-to analysis”. In: ACM SIGPLAN Notices 47.8 (2012),

pp. 107–116 (cit. on pp. 30, 42–44, 47, 50, 54, 55, 70, 72, 73).

[MGR13] S. McPeak, C.-H. Gros, and M. K. Ramanathan. “Scalable and incremental

software bug detection”. In: Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering. 2013, pp. 554–564 (cit. on pp. 6, 7).

[MMP10] M. Méndez-Lojo, A. Mathew, and K. Pingali. “Parallel inclusion-based points-

to analysis”. In: Proceedings of the ACM international conference on Object

oriented programming systems languages and applications. 2010, pp. 428–443

(cit. on pp. 41, 70).

[MP21] A. A. Mathiasen and A. Pavlogiannis. “The fine-grained and parallel complexity

of Andersen’s pointer analysis”. In: Proceedings of the ACM on Programming

Languages 5.POPL (2021), pp. 1–29 (cit. on pp. 3, 74).

[MSS+19] N. Mishin, I. Sokolov, E. Spirin, V. Kutuev, E. Nemchinov, S. Gorbatyuk,

and S. Grigorev. “Evaluation of the context-free path querying algorithm

based on matrix multiplication”. In: Proceedings of the 2nd Joint International

Workshop on Graph Data Management Experiences & Systems (GRADES)

and Network Data Analytics (NDA). 2019, pp. 1–5 (cit. on p. 26).

[Nik16] S. Nikolay. Beyond GPU memory limits with unified memory on pascal.

NVIDIA Developer Blog, Dec. 2016. url: https://developer.nvidia.

com/blog/beyond-gpu-memory-limits-unified-memory-pascal/ (visited

on 11/16/2022) (cit. on p. 39).

[OEAG20] E. Orachev, I. Epelbaum, R. Azimov, and S. Grigorev. “Context-free path

querying by kronecker product”. In: European Conference on Advances in

Databases and Information Systems. Springer. 2020, pp. 49–59 (cit. on p. 26).

[OKKG21] E. Orachev, M. Karpenko, A. Khoroshev, and S. Grigorev. “SPbLA: The

Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations”.

In: 2021 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). IEEE. 2021, pp. 272–275 (cit. on p. 26).

[PB09] F. M. Q. Pereira and D. Berlin. “Wave Propagation and Deep Propagation for

Pointer Analysis”. In: Proceedings of the 7th Annual IEEE/ACM International

Symposium on Code Generation and Optimization. CGO ’09. USA: IEEE

Computer Society, 2009, pp. 126–135. isbn: 9780769535760. doi: 10.1109/

CGO.2009.9. url: https://doi.org/10.1109/CGO.2009.9 (cit. on p. 12).

86

https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1109/CGO.2009.9

BIBLIOGRAPHY Lukas Böttcher

[Pra20] G. Pradeep. CUDA Refresher: The CUDA Programming Model. NVIDIA Devel-

oper Blog, June 2020. url: https://developer.nvidia.com/blog/beyond-

gpu-memory-limits-unified-memory-pascal/ (visited on 08/12/2022) (cit.

on p. 39).

[Rep98] T. Reps. “Program analysis via graph reachability”. In: Information and

software technology 40.11-12 (1998), pp. 701–726 (cit. on pp. 19, 21).

[SB+15] Y. Smaragdakis, G. Balatsouras, et al. “Pointer analysis”. In: Foundations and

Trends® in Programming Languages 2.1 (2015), pp. 1–69 (cit. on p. 9).

[SKB14] Y. Smaragdakis, G. Kastrinis, and G. Balatsouras. “Introspective analysis:

context-sensitivity, across the board”. In: Proceedings of the 35th ACM SIG-

PLAN Conference on Programming Language Design and Implementation.

2014, pp. 485–495 (cit. on p. 9).

[Ste96] B. Steensgaard. “Points-to analysis in almost linear time”. In: Proceedings of

the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages. 1996, pp. 32–41 (cit. on p. 10).

[SX16] Y. Sui and J. Xue. “SVF: interprocedural static value-flow analysis in LLVM”.

In: Proceedings of the 25th international conference on compiler construction.

ACM. 2016, pp. 265–266 (cit. on pp. 27, 28, 35, 41).

[SX18] Y. Sui and J. Xue. “Value-flow-based demand-driven pointer analysis for

C and C++”. In: IEEE Transactions on Software Engineering 46.8 (2018),

pp. 812–835 (cit. on p. 27).

[SXW+18] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang. “Pinpoint: Fast and

precise sparse value flow analysis for million lines of code”. In: Proceedings of

the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 2018, pp. 693–706 (cit. on p. 27).

[SYX14a] Y. Su, D. Ye, and J. Xue. “Parallel pointer analysis with CFL-reachability”.

In: 2014 43rd International Conference on Parallel Processing. IEEE. 2014,

pp. 451–460 (cit. on p. 55).

[SYX14b] Y. Sui, D. Ye, and J. Xue. “Detecting memory leaks statically with full-sparse

value-flow analysis”. In: IEEE Transactions on Software Engineering 40.2

(2014), pp. 107–122 (cit. on pp. 27, 28).

[SYXL15] Y. Su, D. Ye, J. Xue, and X.-K. Liao. “An efficient GPU implementation

of inclusion-based pointer analysis”. In: IEEE Transactions on Parallel and

Distributed Systems 27.2 (2015), pp. 353–366 (cit. on pp. 2, 70).

87

https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/

BIBLIOGRAPHY Lukas Böttcher

[TG17] J. Toman and D. Grossman. “Taming the static analysis beast”. In: 2nd

Summit on Advances in Programming Languages (SNAPL 2017). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017 (cit. on p. 6).

[WHZ+17] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani. “Graspan: A

single-machine disk-based graph system for interprocedural static analyses of

large-scale systems code”. In: ACM SIGARCH Computer Architecture News

45.1 (2017), pp. 389–404 (cit. on p. 30).

[ZR08] X. Zheng and R. Rugina. “Demand-driven alias analysis for C”. In: Proceedings

of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. 2008, pp. 197–208 (cit. on p. 22).

[ZWH+21] Z. Zuo, K. Wang, A. Hussain, A. A. Sani, Y. Zhang, S. Lu, W. Dou, L.

Wang, X. Li, C. Wang, et al. “Systemizing Interprocedural Static Analysis of

Large-scale Systems Code with Graspan”. In: ACM Transactions on Computer

Systems (TOCS) 38.1-2 (2021), pp. 1–39 (cit. on pp. 30, 31, 55, 72).

88

	Declaration
	Abstract
	Acknowledgment
	1 Introduction
	1.1 Structure of this Thesis
	1.2 Motivation
	1.2.1 Static Analysis in Software Development

	1.3 Pointer Analysis
	1.3.1 Notions of Sensitivity in Pointer Analysis
	1.3.2 Andersen's Analysis
	1.3.3 Steensgard's Analysis
	1.3.4 Wave Propagation
	1.3.5 LLVM - Generating Data for the Analysis

	1.4 Context-free Languages
	1.4.1 Definition of Context-free Languages and Grammars
	1.4.2 Andersen Analysis via CFL-Reachability
	1.4.3 Context-free Path Queries via Matrix Multiplications

	1.5 Related Work
	1.5.1 SVF
	1.5.2 Graspan

	2 PTAGPU
	2.1 Integrating PTAGPU into SVF
	2.2 Goal of the Algorithm
	2.3 Design of the Algorithm
	2.3.1 CUDA Architecture
	2.3.2 Initialization of CUDA code
	2.3.3 Sparse bit vectors
	2.3.4 Edge Insertion
	2.3.5 Concurrent Graph Rewriting
	2.3.6 Combining CPU and GPU execution
	2.3.7 Feeding the Results back into SVF

	2.4 Experimental Results
	2.4.1 Test Suite
	2.4.2 Benchmark Suite

	3 Discussion
	3.1 Evaluation of Results
	3.2 Future Work
	3.3 Conclusion

	A Raw Data
	List of Figures
	List of Tables
	Bibliography

